• Title/Summary/Keyword: GLUT4

Search Result 182, Processing Time 0.027 seconds

Effects of Different Exercise Intensities on GRP-78 and GLUT-4 Expression in Soleus eus Muscle of Streptozotocin-Induced Diabetic Rats (운동강도의 차이가 Streptozotocin-유도 당뇨쥐의 가자미근 GRP-78과 GLUT-4 발현에 미치는 영향)

  • Kim Yang-Hee;Yoon Jin-Hwan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.87-93
    • /
    • 2005
  • This study investigated the response of GLUT -4 and GRP-78 expression in soleus muscle of streptozotocin-induced diabetic rats by imposing different exercise intensities. F344 rats were randomly divided into 4 groups (n=15 in each group): Control (Control), diabetes-operation (DO), diabetes with low intensity exercise (DLE) and diabetes with high intensity exercise (DHE). The rats in DLE and DHE groups were exercised for 8 weeks by treadmill running. Blood glucose levels in DO were significantly higher compared to that in NORMAL whereas DLE showed the most lowest level in blood glucose among diabetic groups. Diabetic groups exhibited significantly lower level in insulin change and DLE showed significantly higher insulin level among diabetic groups. GRP-78 in DO was significantly $(167.05\%)$ higher than that in Control. GRP-78 in DLE was $139.41\%$ which is significantly higher compared to Control but when compared to DO and DHE, it was significant low. GRP-78 in DHE was $194.64\%$ which doubled the protein level in Control and showed the most highest level in all groups. GLUT-4 in DO was significantly $(33.58\%)$ higher compared to Control. GLUT-4 in DLE showed $124.58\%$ which was significant high compared to Control, DO and DHE. GLUT-4 in DHE showed $26.91\%$ compared to Control and was the most lowest level among all groups. It seems clear that chiefly low intensity exercise benefits diabetic patients in controlling blood glucose. It was concluded that low intensity exercise induces translocation of GLUT-4 which results in increased blood inflow, thus GRP-78 expression is decreased.

Studies on the Interaction of Glut4 and Cytoskeletal Protein (Glut4와 Cytoskeletal Protein의 상호작용에 관한 연구)

  • 김미영;이경림
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.398-401
    • /
    • 1996
  • The glucose transporters found in the plasma membrane of all animal cells are known to have 12 putative transmembrane domains. Among 7 cytoplasmic loops, the fourth loop is the largest one. Since previous studies showed that cofilin, an actin-modulating protein, was found to interact with the largest cytoplasmic loop of (Na, K)ATPase, we tested if cofilin interacts with the largest cytoplasmic loop of Glut4. We demonstrated by the two-hybrid system that the largest cytoplasmic loop of Glut4 did not show any interaction with cofilin, suggesting that cofilin is not required for the membrane targeting process of other membrane proteins but only for a P-type ATPase.

  • PDF

Compartmental Analysis of the Insulin-induced GLUT4 Recruitment in Adipocytes

  • Ryu, Ji-Won;Jung, Chan-Y.
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.285-292
    • /
    • 2001
  • Insulin stimulates glucose uptake in muscle and adipose tissue and thus maintains normal blood glucose level in our body. Derangement of this process causes many grave health problems. Insulin stimulates glucose transport primarily by recruiting GLUT4 from its intracellular storage sites to the plasma membrane. The process is complex and involves GLUT4 trafficking through multiple subcellular compartments (organelles) and many protein functions, details of which are poorly understood. This review summarizes a recent development to isolate and characterize the individual intracellular GLUT4 compartments and to illustrate how this compartmental analysis will help to identify the insulin-sensitive step or steps in the insulin-induced GLUT4 recruitment in rat adipocytes. The review does not cover the recent exciting development in identification of many proteins implicated in this process.

  • PDF

The change GLUT-4 and muscle fiber type in Streptozotocin-diabetic rats (Streptozotocin 유발 당뇨백서에서의 골격근의 GLUT-4와 근섬유의 변화)

  • Heo, Myoung;Kim, Kye-Yoep;Oh, Myung-Hwa;Park, Seung-Kyu
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.1 no.1
    • /
    • pp.73-85
    • /
    • 2003
  • The purpose of this study is to discuss and analyze the change of GLUT-4 and muscle fiber type of streptozotocin(STZ)-diabetic rats over a period of 6 weeks. We divided into four groups; I(aquatic exercise and feeding of Cordyceps militaris; n=6), test group II(feeding of Cordyceps miliaris; n=6), test group III(aquatic exercise; n=6), control group IV(non-treatment; n=6). After experimenting we measured the blood glucose, body weight, muscle fiber type and GLUT-4 protein content. The change of glucose levels decreased greater in group I than the other group. The body weight gain was lower in the all groups. The change femoris muscle fiber type, the size of muscle fiber TypeII lessened more than the one of Type I in group IV. Decrease of muscle fiber size more diminishment in group I than the other group. GLUT-4 protein quantity decrease in group IV compared to normal group. It was significantly increased in group. I, III compared to group IV. But there was more increase in group I (p<.001). These results suggest that GLUT-4 and muscle fiber type II decrease in STZ-diabetic rats and that when we apply aquatic exercise and feeding of Cordyceps militaris in diabetic rats over a period 6 weeks, it is increase GLUT-4 and the increase of insulin sensitivity of peripheral tissue. So it is considered to be helpful in improvement of glucose homeostasis and in prevent from muscle atrophy resulted from complication.

  • PDF

Molecular Association of Glucose Transporter in the Plasma Membrane of Rat Adipocyte

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.115-123
    • /
    • 1991
  • Molecular association of glucose transporters with the other proteins in the plasma membrane was assessed by gel electrophoresis and immunoblot techniques. Approximately $31.5{\pm}5.1%$ of GLUT-4, $64.8{\pm}2.7%$ of clathrin, 48.7% of total protein in the plasma membrane (PM) were found insoluble upon extraction with 1% Tx-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the Tx-100 insoluble PM fraction contained about 4 major polypeptides with apparent molecular weight of above 200, 100-120, 80 and 30-35 KDa that were readily removed upon wash with a high pH buffer which is known to remove clathrin and 0.5 M Tris-buffer which is known to remove assembly proteins (AP). Immunoblotting of GLUT4 and clathrin against specific antibodies showed that GLUT-4 and clathrin were co-solubilized up to 84.6% and 82.7% respectively by wash with a high pH buffer and 1% Tx-100. When the membrane was pre-washed with a high pH buffer and 0.5 M Tris solution, GLUT4 and clathrin were not solubilized further suggesting that GLUT4 molecules are in molecular association with clathrin, AP and/or other extrinsic membrane proteins in plasma membrane and the formation of clathrin-coated structures might be involved in insulin stimulated glucose transporter translocation mechanism.

  • PDF

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Effects of Antidiabetic and GLUT4 gene Expression of Acanthopanax senticosus Extracts (가시오가피 추출물의 항당뇨 활성 및 GLUT4 유전자 발현에 미치는 영향)

  • Choung, Eui-Su;Park, Jong-Phil;Choi, Han;Jang, Gyeong-Sun;Kang, Shin-Ho;Kang, Se-Chan;Zee, Ok-Pyo
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.228-232
    • /
    • 2008
  • Antidiabetic effects of an aqueous and solvent extract prepared from the root, stem and fruit parts of Acanthopanax senticosus, were investigated in experimental Streptozotocin (STZ)-induced diabetic rats model. The n-butanol and water extracts of A. senticosus were orally administrated once a day for 6 days. The n-butanol extracts of fruit (FB) showed highest efficiency than other groups (water extracts of stem, root and fruit; butanol extracts of stem, root) on serum glucose values in the STZ-induced diabetic rats. We have studied gene expression of glucose transporter genes in C2C12 skeletal muscle cell line during differentiation treated by the n-butanol and water extracts of A. senticosus, SW, RW, FW, SB, RB and FB. The GLUT4 gene was high expressed by FB treatment. These findings suggest that FB of A. senticosus have GLUT4 gene expression activity for glucose homeostasis and may have beneficial effects on blood glucose lowering in the diabetic patients.

Effects of Dietary Caloric Restriction and Exercise on GLUT 2 in Liver and GLUT-4 and VAMP-2 in Muscle Tissue of Diabetic Rats

  • Jeong, Ilgyu;Oh, Myungjin;Jang, Moonnyeo;Koh, Yunsuk;Biggerstaff, Kyle D.;Nichols, David;Ben-Ezra, Vic
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It has been shown that both caloric restriction and exercise, enhances glucose uptake through translocation of GLUT-4 protein. It remains unclear how exercise and caloric restriction affect the changes in VAMP (vesicle-associated membrane protein) in skeletal muscle and GLUT-2 in liver. This study investigated the effects of exercise training and caloric restriction on the expressions of glucose transport relating proteins in muscle and liver tissues in diabetic rats. Forty male Sprague-Dawley rats (250±10 g; 8 week in age) were assigned equally to four different groups; control (C), exercise only (E), dietary restriction only (D) and dietary restriction and exercise (DE). Daily food consumption was monitored to establish baseline intake. Both C and E groups consumed baseline food intake while D and DE groups were provided with only 60% of baseline total food intake. Forty-eight hours after intraperitoneal injection of STZ (50 mg/kg), diabetes was confirmed (8-hr fasting blood glucose levels ≥300 mg/dl). Rats in the E and DE groups exercised on a motorized treadmill for 30 min/d, 5 days/week for 4 weeks (5 min running at 3 m/min, 0% grade; 8 m/min for the next 5min, and then 15 m/min for 20 min). Rats were sacrificed 48 hrs after the last bout of exercise. Soleus muscle and liver were extracted to analyze for GLUT-4, VAMP-2, and GLUT-2, respectively. All variables were analyzed using the Western Blotting technique. All values were expressed as optical volume measured by optical density. A Two-way ANOVA was used to examine the difference between groups and applied Duncan's test for post-hoc. No significant differences in GLUT-2 expression were found among groups. However, E (280133±13228 arbitrary units{AU}) and DE (268833±14424 AU) groups showed significantly higher (p<.001) levels of GLUT-4 as compared with C (34461±2099 AU) and D groups (27847±703 AU). VAMP-2 protein expression increased (p<.001) in E (184137±7803 AU) and DE (189800±10856 AU) groups as compared to C (74201±8296AU) and D (72967±863 AU) groups. These results suggest that either exercise with or without caloric restriction increases the up-regulation of GLUT-4 and VAMP-2 in skeletal muscle of diabetic rats. However, GLUT-2 protein in liver was not affected by either exercise or exercise with caloric restriction.

Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats (저항성훈련이 흰쥐 골격근의 GLUT-4 단백질 및 LDH 동위효소 발현에 미치는 영향)

  • Kim, Yeon-Hee;Lee, Sang-Hak;Kim, Jong-Oh;Seo, Tae-Beom;Kim, Young-Pyo;Back, Kyoung-A;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1532-1540
    • /
    • 2011
  • The purpose of the present study was to investigate the effect of climbing resistance training on GLUT-4 protein and LDH isozyme activities of the soleus and gastrocnemius muscles in rats. Each experimental group was randomly divided into a control group (n=6) and a resistance exercise (n=6) group. Sprague-Dawley rats were made to climb a 180 cm tower for 12 wk. Weight changes in the resistance exercise group were significantly higher than in the control group (p<0.05). GLUT-4 protein expression of the soleus and gastrocnemius muscles was significantly higher (p<0.05) in the resistance exercise group than in the control group. There was no difference in soleus tissue LDHA4 isozyme activity between the groups. In the case of other LDH isozyme, when compared with the control group, the resistance exercise group showed a significantly higher activity (p<0.05). LDHA4 activity of gastrocnemius muscle tissue was not different between the groups. However, the activity of the resistance exercise group of all the other LDH isozymes was significantly higher than that of the control group (p<0.05). In summary, based on the results of this study, over 12 weeks of resistance training, the total body weight of the rats was reduced and the GLUT-4 activity in the gastrocnemius and soleus muscles was increased. In addition, except for LDH A4 all of the other LDH isozymes activities were increased. These results suggest that climbing resistance training affects the balance of body composition, increases LDH B-type isoenzymes and glucose metabolism capacity, and improves mitochondrial function.

HIF-1α and GLUT1 Gene Expression is Associated with Chemoresistance of Acute Myeloid Leukemia

  • Song, Kui;Li, Min;Xu, Xiao-Jun;Xuan, Li;Huang, Gui-Nian;Song, Xiao-Ling;Liu, Qi-Fa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1823-1829
    • /
    • 2014
  • Aims: Much evidence suggests that increased glucose metabolism in tumor cells might contribute to the development of acquired chemoresistance. However, the molecular mechanisms are not fully clear. Therefore, we investigated a possible correlation of mRNA expression of HIF-$1{\alpha}$ and GLUT1 with chemoresistance in acute myeloid leukemia (AML). Methods: Bone marrow samples were obtained from newly diagnosed and relapsed AML (M3 exclusion) cases. RNA interference with short hairpin RNA (shRNA) was used to stably silence GLUT1 or HIF-$1{\alpha}$ gene expression in an AML cell line and HIF-$1{\alpha}$ and GLUT1 mRNA expression was measured by real-time quantitative polymerase chain reaction assay (qPCR). Results: High levels of HIF-$1{\alpha}$ and GLUT1 were associated with poor responsiveness to chemotherapy in AML. Down-regulation of the expression of GLUT1 by RNA interference obviously sensitized drug-resistant HL-60/ADR cells to adriamycin (ADR) in vitro, comparable with RNA interference for the HIF-$1{\alpha}$ gene. Conclusions: Our data revealed that over-expression of HIF-$1{\alpha}$ and GLUT1 might play a role in the chemoresistance of AML. GLUT1 might be a potential target to reverse such drug resistance.