• 제목/요약/키워드: GLUT-2

Search Result 175, Processing Time 0.026 seconds

Antidiabetic Effects of Corni Fructus Extract on Blood Glucose and Insulin Resistance in db/db Mice

  • Kim, Hye-Jeong;Kim, Kil-Soo;Lee, Tae-Jong;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.93-99
    • /
    • 2009
  • This study investigated the effect of Corni Fructus (Cornus officinalis Sieb. et Zucc.) extract on blood glucose and insulin resistance in db/db mice. Seven weeks old male mice were divided into normal control group (NC), diabetic control group (DC) and Corni Fructus treated diabetic group (DCF). Over an 8-week experimental period, Corni Fructus extract was administered orally at 500 mg/kg BW/day. Corni Fructus inhibited increase in blood glucose level during the OGTT (oral glucose tolerance test). At 8 weeks after beginning of the experiment, blood glucose level in the DCF group was significantly lower (p<0.01) than the DC group. Final fasting serum glucose and triglyceride in the DCF group were significantly lower (p<0.05) than the DC group by 32% and 41% respectively. Serum insulin did not differ among the NC, DC and DCF groups. The mRNA expression of adiponectin, GLUT 4 and PPAR-$\gamma$ in adipose tissue in the DC group were significantly lower than the NC group and they were higher in the DCF group than the DC group by 76%, 130% (p<0.05) and 43%, respectively. In conclusion, these results indicated that Corni Fructus would have antidiabetic effects via improving insulin resistance in favor of higher glucose utilization and reducing blood glucose level in db/db mice.

High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

  • Choi, He Yun;Park, Ji Hye;Jang, Woong Bi;Ji, Seung Taek;Jung, Seok Yun;Kim, Da Yeon;Kang, Songhwa;Kim, Yeon Ju;Yun, Jisoo;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

Fibroin Enhances Insulin Sensitivity and Reverses Insulin Resistance in 3T3-L1 Adipocytes

  • Hyun Chang-Kee;Frost Susan C.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.185-197
    • /
    • 2004
  • Type 2 diabetes is characterized by hyperglycemia and hyperinsulinemia, features of insulin resistance. In vivo treatment of ob/ob mice with hydrolyzed fibroin reverses these pathological attributes (6). To explore the mechanism underlying this effect, we have used the 3T3-Ll adipocytes as a cell type which would represent the periphery, in vivo. Exposure of 3T3-Ll adipocytes to chronic insulin leads to the a 50% loss of insulin-stimulated glucose uptake. Chronic exposure to fibroin blocked, in part, the response to chronic insulin but also increased the sensitivity of control cells to the acute action of insulin. The later effect was most robust at physiological concentrations of insulin. Fibroin did not prevent the insulin-induced down-regulation of the insulin receptor or the tyrosine kinase activity associated with the receptor. Further, fibroin had no affect on the loss in activity of the insulin-sensitive down-stream kinase, Akt. Interestingly, fibroin accelerated glucose metabolism and glycogen turnover independent of insulin action. In addition, fibroin up-regulated GLUT1 which increased its expression at the cell surface and caused the redistribution of GLUT4 to the plasma membrane. Together, these later effects would lead to an improvement in hyperglycemia in vivo which would in turn reduce the need for insulin.

  • PDF

Identification and Functional Characterization of P159L Mutation in HNF1B in a Family with Maturity-Onset Diabetes of the Young 5 (MODY5)

  • Kim, Eun Ky;Lee, Ji Seon;Cheong, Hae Il;Chung, Sung Soo;Kwak, Soo Heon;Park, Kyong Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • Mutation in HNF1B, the hepatocyte nuclear factor-$1{\beta}$ (HNF-$1{\beta}$) gene, results in maturity-onset diabetes of the young (MODY) 5, which is characterized by gradual impairment of insulin secretion. However, the functional role of HNF-$1{\beta}$ in insulin secretion and glucose metabolism is not fully understood. We identified a family with early-onset diabetes that fulfilled the criteria of MODY. Sanger sequencing revealed that a heterozygous P159L (CCT to CTT in codon 159 in the DNA-binding domain) mutation in HNF1B was segregated according to the affected status. To investigate the functional consequences of this HNF1B mutation, we generated a P159L HNF1B construct. The wild-type and mutant HNF1B constructs were transfected into COS-7 cells in the presence of the promoter sequence of human glucose transporter type 2 (GLUT2). The luciferase reporter assay revealed that P159L HNF1B had decreased transcriptional activity compared to wild-type (p < 0.05). Electrophoretic mobility shift assay showed reduced DNA binding activity of P159L HNF1B. In the MIN6 pancreatic ${\beta}$-cell line, overexpression of the P159L mutant was significantly associated with decreased mRNA levels of GLUT2 compared to wild-type (p < 0.05). However, INS expression was not different between the wild-type and mutant HNF1B constructs. These findings suggests that the impaired insulin secretion in this family with the P159L HNF1B mutation may be related to altered GLUT2 expression in ${\beta}$-cells rather than decreased insulin gene expression. In conclusion, we have identified a Korean family with an HNF1B mutation and characterized its effect on the pathogenesis of diabetes.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

Identification of Genetic Variations in CBL, SORBS1, CRK, and RHOQ, Key Modulators in the CAP/TC10 Pathway of Insulin Signal Transduction, and Their Association with Type 2 Diabetes Mellitus in the Korean Population

  • Hong, Kyung-Won;Jin, Hyun-Seok;Lim, Ji-Eun;Go, Min-Jin;Lee, Jong-Young;Hwang, Sue-Yun;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.53-56
    • /
    • 2009
  • Recent evidence has strongly suggested that the CAP/TC10 pathway is involved in the trafficking, docking, and fusion of vesicles containing the insulin-responsive glucose transporter Glut4 to the plasma membrane. However, little is known about how the genes employed in the CAP/TC10 pathway are associated with the development of type 2 diabetes mellitus. In this study, we sequenced 4 genes of the CAP/TC10 pathway [SORBS1, CBL, CRK, and RHOQ] in 24 individuals to identify genetic variations in these loci. A total of 48 sequence variants were identified, including 23 novel variations. To investigate the possible association with type 2 diabetes mellitus, 3 single nucleotide polymorphisms from SORBS1, 3 from CBL, and 4 from RHOQ were genotyped in 1122 Korean type 2 diabetic patients and 1138 nondiabetic controls. Using logistic regression analysis, 1 significant association between SNP rs1376405 in RHOQ and type 2 diabetes mellitus [OR = 8.714 (C.I. 1.714-44.29), p = 0.009] was found in the recessive model. Our data demonstrate a positive association of the RHOQ gene in the CAP/TC10 pathway with T2DM in the Korean population.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell (Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Establishment of a [18F]-FDG-PET/MRI Imaging Protocol for Gastric Cancer PDX as a Preclinical Research Tool

  • Bae, Seong-Woo;Berlth, Felix;Jeong, Kyoung-Yun;Suh, Yun-Suhk;Kong, Seong-Ho;Lee, Hyuk-Joon;Kim, Woo Ho;Chung, June-Key;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.60-71
    • /
    • 2020
  • Purpose: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric cancer remains controversial and a rationale for patient selection is desired. This study aims to establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for gastric cancer and compare different PDX models regarding tumor growth and FDG uptake. Materials and Methods: Female BALB/c nu/nu mice were implanted orthotopically and subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor implantation methods. Microscopic and immunohistochemical investigations were performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake. Results: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. Standard scanning protocol was determined to include 150 μCi FDG injection dose and scanning after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049). Conclusions: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.