• Title/Summary/Keyword: GIS snow map

Search Result 5, Processing Time 0.021 seconds

Regional snows scenario for the support systems Analysis (지역별 제설 시나리오 응원체계 구축연구)

  • Kim, Heejae;Oak, Youngsuk;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • Because of abnormal weather, a heavy snow on the Northern latitudes occurs frequently. This has resulted in significant damage and recovery costs. In korea, it has been declared a special disaster area due to heavy snowfall in Gangneung and Pohang 2004, 2005 and 2011, so there was a revision of action instruction for the road snow removal. Although, in our current system, snow removing methodology, regional equipment holdings, and snow responsible interval, respectively, has been classified by the National Highway, near cities and provinces support system not yet prepared. Only, if snow removing is not possible within the region itself, which contained the contents of "support and assistance to military or nearby offices requests". In this thesis, we studied the disaster scenario development according to heavy snow and the response and support system to the features of each regional. For the scenario deduction, we preferentially collected day snowfall and disaster yearbook data to regionals, classified similar pattern and plotted GIS snow map. We also classified heavy snow disaster by region and type and we deduced five-step scenario. The five-step scenario is nationwide(1st-stage), the National Capital region(2nd-stage), the Chungcheong Provinces(3rd-stage), the Kangwon province(4th-stage) and the Ch?l a provinces(5th-stage). Therefore we build near provinces support system according to five-step scenario.

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

A study on the future snowmelt simulation using GIS - Soyanggang-dam and Chungju-dam Watersheds - (GIS 기반의 미래융설모의 연구 - 소양강댐, 충주댐 유역 -)

  • Shin, Hyung-Jin;Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.225-229
    • /
    • 2005
  • The objective of this study is to evaluate snowmelt impact on watershed hydrology using climate change scenarios on Soyanggang-dam and Chungju-dam watershed. SLURP model was used for analyzing hydrological changes based on climate changes. The results (in years 2050 and 2100) of climate changes scenarios was CCCma CGCM2 of SRES suggested by IPCC and the snow cover map and snow depth was derived from NOAA/AVHRR images. The model was calibrated and verified for dam inflow data from 1998 to 2001.

  • PDF

Heavy Snowfall Disaster Response using Multiple Satellite Imagery Information (다중 위성정보를 활용한 폭설재난 대응)

  • Kim, Seong Sam;Choi, Jae Won;Goo, Sin Hoi;Park, Young Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.135-143
    • /
    • 2012
  • Remote sensing which observes repeatedly the whole Earth and GIS-based decision-making technology have been utilized widely in disaster management such as early warning monitoring, damage investigation, emergent rescue and response, rapid recovery etc. In addition, various countermeasures of national level to collect timely satellite imagery in emergency have been considered through the operation of a satellite with onboard multiple sensors as well as the practical joint use of satellite imagery by collaboration with space agencies of the world. In order to respond heavy snowfall disaster occurred on the east coast of the Korean Peninsula in February 2011, snow-covered regions were analyzed and detected in this study through NDSI(Normalized Difference Snow Index) considering reflectance of wavelength for MODIS sensor and change detection algorithm using satellite imagery collected from International Charter. We present the application case of National Disaster Management Institute(NDMI) which supported timely decision-making through GIS spatial analysis with various spatial data and snow cover map.

Multi-temporal image derived Ratio Vegetation Index and NDVI in a landslide prone region

  • Paramarthalingam, Rajakumar;Shanmugam, Sanjeevi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.257-259
    • /
    • 2003
  • Landuse maps are prepared from satellite imagery and field observations were conducted at various locations in the study area. Compared to the field data and NDVI and RVI thematic maps, NDVI is better than RVI, because it compensates for changing illumination conditions, surface slope, aspect and other factors. Clouds, water and snow have negative values for RVI and NDVI. Rock and bare soils have similar reflectance in both NIR and visible band, so RVI and NDVI are near zero. In forest areas with good vegetation cover, NDVI is high and landslide occurrence is less. But if annual and biennial vegetations are present and if cultivation practices are changed frequently, NDVI is medium and landslide occurrence is moderate. In areas where deforestation and settlement is in progress, NDVI is less and landslide occurrence is more. The NDVI FCC thematic map may be used as an important layer in GIS application for landslide studies. Analyzing other layers such as slope, rainfall, soil, geology, drainage, lineament, etc with NDVI FCC layer will give a better idea about the identity of landslide prone areas.

  • PDF