• Title/Summary/Keyword: GIS Road Data

Search Result 249, Processing Time 0.03 seconds

Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS (Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발)

  • Ryu, Seung-Kyu;Lee, Seung-Jae;Ahn, Woo-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.149-158
    • /
    • 2005
  • The object of this paper is to develop the shortest path algorithm. The existing shortest path algorithm models are developed while considering travel time and travel distance. A few problems occur in these shortest path algorithm models, which have paid no regard to cognition of users, such as when user who doesn't have complete information about the trip meets a strange road or when the route searched from the shortest path algorithm model is not commonly used by users in real network. This paper develops a shortest path algorithm model to provide ideal route that many people actually prefer. In order to provide the ideal shortest path with the consideration of travel time, travel distance and road cognition, travel time is predicted by using Kalman filtering and travel distance is predicted by using GIS attributions. The road cognition is considered by using space data of GIS. Optimal routes provided from this paper are shortest distance path, shortest time path, shortest path considering distance and cognition and shortest path considering time and cognition.

A Study on the Architecture Design of Road and Facility Operation Management System for 3D Spatial Data Processing (3차원 공간데이터 처리를 위한 차로 및 시설물 운영 관리 시스템 아키텍처 설계 연구)

  • KIM, Duck-Ho;KIM, Sung-Jin;LEE, Jung-Uck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.136-147
    • /
    • 2021
  • Autonomous driving-related technologies are developing step by step by applying the degree of driving. It is essential that operational management technology for roads where autonomous vehicles move should also develop in line with autonomous driving technology. However, in the case of road operation management, it is currently managed using only two-dimensional information, showing limitations in the systematic operation management of lane and facility information and maintenance. This study proposed a plan to construct an operation management system architecture capable of 3D spatial information-based operation management by designing a convergence database that can process real-time big data with high-definition road map data. Through this study, when using a high-definition road map based operation management system for lane and facility maintenance in the future, it is possible to visualize and manage facilities, edit and analyze data of multiple users, link various GIS S/W and efficiently process large scale of real-time data.

Land Use Analysis of Road Circumstance using Remote Sensing and GIS (RS와 GIS를 이용한 도로주변의 토지이용분석)

  • Choi, Seok-Keun;Hwang, Eui-Jin;Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.133-140
    • /
    • 2007
  • In this study we did the monitor the change of a urban land coverage to forecast and to deal with various city problems according to urban development. The amount of change of a land coverage used the landsat satellite image and was calculated by analyzing the situation and the distribution aspect of land cover of the road circumstance by time series. We interpreted two images which are taken picture different time and calculated the amount of the area change through integration of the spatial analysis technique of remote sensing and GIS for this study. We could create the development model of the urban area by continuous analysis of satellite and geographic data.

Application of GIS Based AHP for Route Location (노선 선정에서 계층분석과정을 이용한 GIS의 적용)

  • Roh, Tae Ho;Jeong, In Ju;Lee, Sung Rock
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.55-67
    • /
    • 2005
  • This study presented the route location method by applying AHP and evaluating quantitatively. This study developed the program that can be easily applied to this kind of road design, and built the decision support system for route location. The study results are summarized as follows ; We could quantitatively evaluate the appropriateness of exiting routes by applying the AHP based on GIS. If we apply this to the roads that will be newly constructed, we can make the objective and reliable route location when making road plans and basic designs. We improved the technique of route location by applying the decision support system with third-dimensional data, which considers even the vertical alignment plan, to the existing decision support system with second-dimensional data. And, since we can set those data such as vertical slope, earth-volume, structure size, location and construction cost to independent variables, we can make road designs more scientifically and reasonably.

  • PDF

A Study on Route Location Using Decision Support System (의사결정체계를 이용한 노선 선정에 관한 연구)

  • Seo Dong Ju;Lee Jong Chool;Roh Tae Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.117-128
    • /
    • 2005
  • This study presented the route location method by applying AHP and evaluating quantitatively. This study developed the program that can be easily applied to this kind of road design, and built the decision support system fur route location. The study results are summarized as follows : We could quantitatively evaluate the appropriateness of exiting routes by applying the AHP based on GIS. If we apply this to the roads that will be newly constructed, we can make the objective and reliable route location when making road plans and basic designs. We improved the technique of route location by applying the decision support system with third-dimensional data, which considers even the vertical alignment plan, to the existing decision support system with second-dimensional data. had, since we call set those data such as vertical slope, earth-volume, structure size, location and construction cost to independent variables, we can make road designs more scientifically and reasonably.

Automatic Generation Method of Road Data based on Spatial Information (공간정보에 기반한 도로 데이터 자동생성 방법)

  • Joo, In-Hak;Choi, Kyoung-Ho;Yoo, Jae-Jun;Hwang, Tae-Hyun;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-64
    • /
    • 2002
  • VEfficient generation of road data is one of the most important issues in GIS (Geographic Information System). In this paper, we propose a hybrid approach for automatic generation of road data by combining mobile mapping and image processing techniques. Mobile mapping systems have a form of vehicle equipped with CCD camera, GPS, and INS. They can calculate absolute position of objects that appear in acquired image by photogrammetry, but it is labor-intensive and time-consuming. Automatic road detection methods have been studied also by image processing technology. However, the methods are likely to fail because of obstacles and exceptive conditions in the real world. To overcome the problems, we suggest a hybrid method for automatic road generation, by exploiting both GPS/INS data acquired by mobile mapping system and image processing algorithms. We design an estimator to estimate 3-D coordinates of road line and corresponding location in an image. The estimation process reduces complicated image processing operations that find road line. The missing coordinates of road line due to failure of estimation are obtained by cubic spline interpolation. The interpolation is done piecewise, separated by rapid change such as road intersection. We present experimental results of the suggested estimation and interpolation methods with image sequences acquired by mobile mapping system, and show that the methods are effective in generation of road data.

  • PDF

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

Spatial Relationship of Suburb, Road and River in respect to Forest Canopy Density Change Using GIS and RS

  • Pantal, Menaka;Kim, Kye-Hyun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.257-270
    • /
    • 2005
  • Many studies states that improperly uprising of infrastructure may cause leading the forest degradation and canopy reduction in many tropical forest of Asian countries. Other studies revealed that habitat destruction and fragmentation, edge effects, exotic species invasions, pollution are provoked by roads. Similarly, environmental effects of road construction in forests are problematic. Similarly, many researches have been indicated that roads have a far greater impact on forests than simply allowing greater access for human use. Moreover, people using river as means of transportation hence illegal logging and felling cause canopy depletion in many countries. Therefore, it is important to comprehend the study about spatial relation of road, river and suburb followed by temporal change of forest canopy phenomena. This study also tried to examine the effect of road, river and suburb in forest canopy density change of Terai forest of Nepal from you 1988 to 2001. So, Landsat TM88, 92 and 001 and FCD (Forest Canopy Density) mapper were used to perform the spatial .elation of canopy density change. ILWIS (Integrated Land and Water Information System) which is GIS software and compatible with remote sensing data was used to execute analysis and visualize the results. Study found that influence of distance to suburb and river had statistically significance influenced in canopy change. Though road also influenced canopy density much but didn't show a statistical relation. It can be concluded from this research that understanding of spatial relation of factors respect with canopy change is quite complex phenomena unless detail analysis of surrounding environment. Hence, it is better to carry out comprehensive analysis with other additional factors such as biophysical, anthropogenic, social, and institutional factors for proper approach of their effect on canopy change.

  • PDF

The Techniques Development for the Possibility Area Analysis of Yarding Operation and the Forest-road Network Arrangement using GIS (GIS를 이용한 집재작업 가능구역 분석 및 노망배치를 위한 기법 작성)

  • Kwon, Hyun-Jung;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.143-155
    • /
    • 2013
  • In order to establish efficient timber harvesting system and provide the necessary data for the system establishment, the techniques to identify areas possible of the yarding-operation and design forest-road networks were newly developed and the applicability of the techniques are tested in this study. The new techniques were developed based on ArcGIS, particularly with utilizing the Viewshed Analysis Tool. From the results of the identification of the possible yarding-operation areas, it is found that the percentage of possible yardingoperation area decreases with the increment of maximum yarding distance due to terrestrial effects. When forest road networks are extended in impossible yarding-operation sites, the area of possible yarding-operation sites increases. If a forest road network is newly designed, its overall extension is altered, resulting in changes in the possible yarding-operation areas. Through the comparative analysis among the different possible yardingoperation areas from different forest road networks, the maximization of the yarding-operation possible area can be achieved. The results from this study can be utilized for establishing more efficient timber-harvesting system and developing GIS-based programs to manage the system.

Extraction of Information on Road Surface Using Digital Video Camera (디지털 비디오카메라를 이용한 도로노면정보 추출)

  • Jang Ho Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • The objective of the study is to extract information about the road surfaces to be studied by analyzing asphalt concrete-paved road surface images photographed with a digital video camera. To analyze the accuracy of road surface information gained using a digital imagery processing method, it was compared and analyzed with the outcomes of control surveying. As a result, an average error of 0.0427 m in the X-axis direction, that of 0.0527 m in the Y-axis direction, and that of 0.1539 m in the Z-axis direction were found, good enough for mapping at a scale of 1:1,000 or less and GIS data. Besides, information on road surface assessment factors such as crack ratio, the amount of rutting and profile index was gained by analyzing processed digital imagery. This information made it possible to conduct road surface assessment by generating PSI and MCI. As quality digital image information has been gathered from roads and stored, important fundamental data on PMS (Pavement Management System) will become available in the future.