• Title/Summary/Keyword: GIS Data Model

Search Result 1,064, Processing Time 0.027 seconds

Development of Interface System to Couple the SWAT Model and HyGIS (HyGIS와 SWAT의 연계 시스템 개발)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.136-145
    • /
    • 2006
  • SWAT includes a lot of parameters related with geography, hydrological time series, land management and water pollution, etc. So, it needs many spatial, non-spatial and time series data to run SWAT. If SWAT is operated in conjunction with GIS, we can use database which includes model input data and do all the processes which covers data creation, model input and analysis of simulation results in a system. The objective of this study is to develop HyGIS-SWAT which is the interface system to couple the SWAT model and HyGIS. To achieve this object, system operation process based on HyGIS-SWAT data model is evaluated and databases are designed and established. As a result, HyGIS-SWAT prototype system is developed. HyGIS data model and HyGIS-Model operation process can be applied effectively to the development of HyGIS-SWAT. The technologies from this study can be used as base technology to develop another HyGIS application which connect HyGIS with models.

  • PDF

Building GIS Data Model for Integrated Management of The Marine Data of Dokdo (독도 해양자료의 통합적인 관리를 위한 GIS 데이터 모델 수립)

  • Kim, Hyun-Wook;Choi, Hyun-Woo;Oh, Jung-Hee;Park, Chan-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.153-167
    • /
    • 2007
  • Dokdo research has been worked in various fields. However, the continuous accumulation and systematic management of Dokdo research data on marine science haven't been made. In particular, a systematic database system hasn't been established for the research data on marine environment and ecosystem in Dokdo and its surrounding sea. Therefore, GIS database construction on a spatial basis is required for the systematic management and efficient use of Dokdo marine research data, and a marine data model on a GIS basis is needed on the design stage to build the database. In this study, we collected previous observed marine data, and classified them as three groups, such as a framework data group on a GIS basis, a research data group and a thematic data group, according to the data types and characteristics. Moreover, the attributes of each research data were designed to be connected to GIS framework data. The result of the study to build an integrated GIS data model may be useful for developing a management system for marine research data observed in other sea as well as Dokdo.

  • PDF

Store-Release based Distributed Hydrologic Model with GIS (GIS를 이용한 기저-유출 바탕의 수문모델)

  • Kang, Kwang-Min;Yoon, Se-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model (RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정)

  • 강문성;박승우;전종안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

The Integration of Mobile GIS and Spatio-temporal Database for Evaluating Space-time Accessibility of an Individual: An Approach Based on Time Geography Model

  • Lee Yang-Won;Shibasaki Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.753-758
    • /
    • 2005
  • This study attempts at building an integrated GIS computing framework for evaluating space-time accessibility of an individual with the approach of time geography model. The proposed method is based on the integration of mobile GIS and object-relational spatio-temporal database. Three components are central to our system: ( i ) mobile GIS application that transmits spatio-temporal trajectory data of an individual; ( ii ) spatio-temporal database server that incorporates the time geography model; and (iii) geovisualization client that provides time geographic queries to the spatio-temporal database. As for the mobile GIS application, spatio-temporal trajectory data collected by GPS-PDA client is automatically transmitted to the database server through mobile data management middleware. The spatio-temporal database server implemented by extending a generic DBMS provides spatio-temporal objects, functions and query languages. The geovisualization client illustrates 3D visual results of the queries about space-time path. space-time prism and space-time accessibility. This study shows a method of integrating mobile GIS and DBMS for time geography application, and presents an appropriate spatio-temporal data model for evaluating space-time accessibility of an individual.

  • PDF

Development and Application of a GIS Interface for the Agricultural Nonpoint Source Pollution (AGNPS) Model(I) -Model Development- (농업비점원오염모형을 위한 GIS 호환모형의 개발 및 적용(I) -모형의 구성-)

  • 김진택;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.41-47
    • /
    • 1997
  • A geographical resource analysis support system (GRASS) was incorporated to an input and output processor for the agricultural nonpoint source pollution (AGNPS) model. The resulting interface system, GIS-AGNPS was a user-friendly, menu-driven system. GIS-AGNPS was developed to automatically process the input and output data from GIS-based data using GRASS and Motif routines. GIS-AGNPS was consisted of GISAGIN which was an input processor for the AGNPS model, GISAGOUT a output processor for the AGNPS and management submodel. The system defines an input data set for AGNPS from attributes of basic and thematic maps. It also provides with editing modes so that users can adjust and detail the values for selected input parameters, if needed. The post-processor at the system displays graphically the outputs from AGNPS, which may he used to identify areas significantly contributing nonpoint source pollution loads.

  • PDF

Development of Distributed Rainfall-Runoff Modelling System Integrated with GIS (지리정보시스템과 통합된 분포형 강우-유출 모의 시스템 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.76-87
    • /
    • 2009
  • Most distributed models have been developed for data interchange between model for hydrological analysis and GIS(Geographic Information System). And some interface systems between them have been developed to operate the model conveniently. This study is about developing integrated system between model and GIS not coupled system based on file interchange or interface system. In this study, HyGIS-GRM which is integrated system between GRM(Grid based Rainfall-runoff Model) which is physically based distributed rainfall-runoff model and HyGIS(Hydro Geographic Information System) have been developed. HyGIS-GRM can carry out all the processes from preparing input data to appling them to model in the same system, and this operation environment can improve the efficiency of running the model and analyzing modeling results. HyGIS-GRM can provide objective modeling environment through establishing the process of integrated operation of GIS and distributed model, and we can obtain fundamental technologies for developing integrated system between GIS and water resources model.

  • PDF

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

Geographic Information System Application to Wellhead Protection Area Delineation (우물수원 보호구역의 범위 결정에 대한 지형정보시스템의 응용)

  • Kim, Chul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • Groundwater simulation model suing GIS and Arc/Info Gridfunctions were used to delineate wellhead protection areas. Groundwater simulation model was developed within Arcview GIS. The model. which integrates the data input and manipulation. Process simulation. and display of the results . was developed by considering time variations of the parameters. The model was applied to the EPA data. The hydraulic distributions from the EPA data and those calculated from groundwater simulation model agree well and zone of influence from EPA data and that calculated suing GRID functions seem to be consistent. The developed model may be an efficient tool to delineate WHPA because it integrates all the processes inside the GIS.

  • PDF

Extraction of Three-Dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping (교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반)

  • Park, Taeho;Chun, Bumseok;Chang, Seo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.933-938
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value (=5.1%) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

  • PDF