• Title/Summary/Keyword: GI drugs

Search Result 155, Processing Time 0.02 seconds

Collaborative Study for the Establishment of a National Reference Preparation for Erythropoietin

  • Jin, Jae-Ho;Kim, Gi-Hyun;Shin, Won;Shin, Ji-Soon;Choi, Jong-Yoon;Yoon, Sei-Ung;Kim, Min-Sung;Kim, Yang-Woo;Lee, Seung-Woo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.253.2-253.2
    • /
    • 2003
  • National regulatory authority have the duty to ensure that available pharmaceutical products are of the required quality. This is particularly difficult for biotechnological products, the quality of which cannot be established entirely by test on the material in the final container. In general biotechnological products are distinguished from other drugs by being derived from genetically modified microorganism to humans, and frequently have a complex molecular structure. (omitted)

  • PDF

Consideration for Eliminating Dampness (거습법(祛濕法)에 대한 문헌적 소고)

  • Lee, Kwang-Gyu;Shin, Hyun-Jong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.185-188
    • /
    • 2011
  • Dampness is usually caused by the disorder of gi(氣) function, splenic dysfunction. It can be divided into exogenous and endogenous according to the route of invasion. The symptoms of dampness include heaviness of body and four limbs, heaviness of head like being bound, heaviness and lassitude of the whole body. Prescriptions for eliminating dampness are mostly composed of drugs that are aromatic, warm, dry, sweet and bland and can promote diuresis. This group of prescriptions tends to consume and impair body fluid. For this reason, they should be carefully used for patients with deficiency of eum(陰) and body fluid, or those who have weak constitution after illness. In order to select the right therapy for dampness, we must carefully analyze the state of dampness and the condition of healthy gi(氣), and distinguish the relationship between dampness and the healthy state of internal organs.

Drug research and development tend to hyperlipidemia (이상지질혈증과 치료제 연구개발 경향)

  • Seol, In-Chan
    • Journal of Haehwa Medicine
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • Most of the cholesterol is synthesized by liver in the body while about one of third is taken via dietary. The main functions of cholesterol is to protect membranes in cell surface, avoid the arterial bleeding by hypertension, and prolong the life of erythrocytes, and so on. However, overload of cholesterol leads to arteriosclerosis associated with leading death cause. Lack of physical activity, emotional and environmental stress, and low intake of protein or vitamin E induce the unbalance between HDL- and LDL-cholesterol so become a basis of ischemic disorders in heart, brain and elsewhere in the body. So far, four major classes of medications for hyperlipidemia are HMG-CoA reductase inhibitors (statins), bile acid sequestrants, nicotinic acid, and fibric acids. The statins can lower LDL and levels triglyceride, but may induce myopathy and an elevation of liver enzyme levels. The bile acid sequestrants lower LDL levels and raise HDL levels with no effect on triglyceride levels but side effects of gastrointestinal (GI) distress, constipation, and a decrease in the absorption of other drugs. Nicotinic acid and fibric acids lower LDL and triglyceride levels with showing flushing, hyperglycemia, hyperuricemia, GI distress, and hepatotoxicity dyspepsia, gallstones, myopathy, and unexplained noncardiac death as adverse effects. Above western drugs lower cholesterol by 15 to 30% while all have notable adverse effects. In traditional medicine, hyperlipidemia is regarded as retention of phlegm and fluid disease. Etiology and pathogenesis of hyperlipidemia is basically based on Spleen-Deficiency and Phlegm-Stagnation, accumulation and stasis of -heat, and Qi & blood stagnation induced by Phlegm-damp, water-dampness, and blood stasis. Thereby, strengthening Spleen and dissolving Phlegm, clearing away heat and diuresis, and supplementing Qi and activating blood circulation are commonly used therapeutic methods for hyperlipidemia. The traditional herbal medicine, have been used for patients with CVA, hypertension or hyperlipidemia in Oriental hospital or Oriental clinic. The lock and key theory is used to develop most of western medicine, however many diseases are caused by mixed factors in body-complex system. We expect that Oriental pharmacological theory could be newborn as a novel drug showing high advantage of blood levels of lipidsand QOL of performance without side effects.

  • PDF

Dissolution Characteristics of Hydrophobic Drug-Soluble Carrier Coprecipitate (I)-Enhanced Dissolution Rates of Furosemide from Furosemide Polymer Coprecipitates-

  • Shin, Sang-Chull;Lee, Min-Hwa;Woo, Jong-Hak
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.3
    • /
    • pp.48-57
    • /
    • 1976
  • An enhancement in the dissolution rate of the drug should facilitate its GI absorption if the absorption process is dissolution rate limited. One of the need for the techniques that can potentially enhance the dissolution rate and extent of absorption of hydrophobic drugs is the formation of coprecipitates with pharmacologically inert, polymeric materials. The physicochemical modification offers the advantage of possibly enabling one to administer the drug orally in a form from which it is most available for GI absorption. Several $investigation^{1-15)}$ demonstrated that the formation of solid dispersions or coprecipitates of relatively water-insoluble drugs with various pharmacologically inert carriers can increase singnificantly their in vitro dissolution rates. However, little information is available in the literature related to the dissolution rate patterns of furosemide, a water-insoluble diurectices, with respect to the sort of copolymer and the ratio of coprecipitates as a function of time, respectively. The purpose of the present investigation was to ascertain, the general applicability of the copolymers to use fore more fast, enhanced dissolution techniques of furosemide. To accomplish the need for enhancement in the dissolution rate of furosemide, varying ratio coprecipitates with different water-soluble polymers, such as polyvinylpyrrolidone (PVP), polyethylene glycol 4000(PEG 4000), and polyethylene glycol 6000 (PEG 6000), were quantitatively studied by comparing their dissolution characteristics of furosemide. The dissolution patterns of pure furosemide, varying ratio furosemide-PVP coprecipitates, (1:2, 1:5, and 1:9(w/w)), furosemide-PEG 4000 coprecipitates (1:4, 1:9, and 1:19(w/w), furosemide-PEG 6000 coprecipitates(1:4, 1:9, and 1:19(w/w)), and the same ratio physical mixtures, respectively, were compared by the amount dissolved as a function of time.

  • PDF

A Case of Idiopathic Thrombocytopenic Purpura in Pregnancy (임신과 동반된 특발성 혈소판 감소성 자반증 1례)

  • Kim, Mi-Sook;HwangBo, Ho-Joon;Lee, Young-Gi;Park, Yoon-Kee;Lee, Sung-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.512-517
    • /
    • 1993
  • Idiopathic thrombocytopenic purpura is an uncommon illness but most common form of thrombocytopenia in pregnancy. Corticosteroids, splenectomy, immunosuppressive drugs, and immunoglobulin therapy have been recommended for management. The optimal method of delivery is controversial. We have experienced a case of idiopathic thrombocytopenic purpura diagnosed previously and managed with corticosteroid and vincristine, which was followed by pregnancy, vaginal delivery and postpartum splenectomy.

  • PDF

PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts

  • Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2019
  • Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).

Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2

  • Ray, Manisha;Sarkar, Saurav;Rath, Surya Narayan
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.43.1-43.13
    • /
    • 2020
  • The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-CoV-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Machine learning based anti-cancer drug response prediction and search for predictor genes using cancer cell line gene expression

  • Qiu, Kexin;Lee, JoongHo;Kim, HanByeol;Yoon, Seokhyun;Kang, Keunsoo
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.10.1-10.7
    • /
    • 2021
  • Although many models have been proposed to accurately predict the response of drugs in cell lines recent years, understanding the genome related to drug response is also the key for completing oncology precision medicine. In this paper, based on the cancer cell line gene expression and the drug response data, we established a reliable and accurate drug response prediction model and found predictor genes for some drugs of interest. To this end, we first performed pre-selection of genes based on the Pearson correlation coefficient and then used ElasticNet regression model for drug response prediction and fine gene selection. To find more reliable set of predictor genes, we performed regression twice for each drug, one with IC50 and the other with area under the curve (AUC) (or activity area). For the 12 drugs we tested, the predictive performance in terms of Pearson correlation coefficient exceeded 0.6 and the highest one was 17-AAG for which Pearson correlation coefficient was 0.811 for IC50 and 0.81 for AUC. We identify common predictor genes for IC50 and AUC, with which the performance was similar to those with genes separately found for IC50 and AUC, but with much smaller number of predictor genes. By using only common predictor genes, the highest performance was AZD6244 (0.8016 for IC50, 0.7945 for AUC) with 321 predictor genes.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.