• Title/Summary/Keyword: GHP Process

Search Result 8, Processing Time 0.027 seconds

A Study on Building Integrated Design and Commissioning of GHP System (지열히트펌프 시스템의 건물통합설계 및 커미셔닝에 관한 연구)

  • Kim, Ji-Young;Jang, Jea-Chul;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.1-169.1
    • /
    • 2010
  • Geothermal heat pump(GHP)system has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the economics and system reliability has been key issues and barriers to insure a better system performance as designed originally. The building integrated designs of geothermal heat pump system are test and optimize GHP system by evaluating its performance in virtual reality. System design is an iterative process that will help optimize the cost efficiency of the system. One of the primary goals is to minimize the energy imbalance between the amount of energy extracted from the ground and the energy reject to it. This will reduce the land area required to install the GHX, reduce the cost of installing it and ensure the long-term efficiency of the system. Commissioning is the process of ensuring that are designed, installed, functionally tested, and capable of being operated and maintained to performance in conformity with design intent. In this paper, Study on introduction of Initial commissioning method of Geothermal Heat Pump(GHP) system using ISO performance data has been introduced. Also KIER GHP Simulator is used to simulate actual heat pimp operating condition and test commissioning method. Result should that the experiment data base could verify the applicability of the commissioning method, and also were able to suggest a better ways to GHP commissioning.

  • PDF

Data Mining-Based Performance Prediction Technology of Geothermal Heat Pump System (지열 히트펌프 시스템의 데이터 마이닝 기반 성능 예측 기술)

  • Hwang, Min Hye;Park, Myung Kyu;Jun, In Ki;Sohn, Byonghu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • This preliminary study investigated data mining-based methods to assess and predict the performance of geothermal heat pump(GHP) system. Data mining is a key process of the knowledge discovery in database (KDD), which includes five steps: 1) Selection; 2) Pre-processing; 3) Transformation; 4) Analysis(data mining); and 5) Interpretation/Evaluation. We used two analysis models, categorical and numerical decision tree models to ascertain the patterns of performance(COP) and electrical consumption of the GHP system. Prior to applying the decision tree models, we statistically analyzed measurement database to determine the effect of sampling intervals on the system performance. Analysis results showed that 10-min sampling data for the performance analysis had highest accuracy of 97.7% over the actual dataset of the GHP system.

Goal-formation Process in Fractal Manufacturing Systems

  • Ryu Kwangyeol;Jung Mooyoung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.800-807
    • /
    • 2003
  • Decomposition of tasks in the ordinary manufacturing systems is usually based on the predefined goal of the system. To achieve the high-level-goals (e.g., factory goal or company goal), several sub-goals should be achieved in advance. However, goals can change along with the current status of the system and the external environmental situations. Thus, a manufacturing system should support the goal-formations which can be bearable these changes for efficient and effective operations. Therefore, it IS necessary to develop a systematic methodology for the goal-formations in a manufacturing system. Especially, the formation and/or change of goals in real-time should be possible for distributed and dynamic systems including the fractal manufacturing system (FrMS). In this paper, a threefold methodology is proposed for the goal-formation process (GFP) in the FrMS; 1) a goal­generating process (GGP) to make and propagate fuzzy goals, 2) a goal-harmonizing process (GHP) to eliminate or reduce conflicts and interferences of goals by using a mobile agent- based negotiation scheme, and 3) a goal-balancing process (GBP) to make a compromise between goals by using quantifiable indicators of the manufacturing system.

  • PDF

Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop (파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

A Study on Flow Characteristics of PBK40 for Glass Lens Forming Process Simulation Using a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 연구)

  • Chang, Sung-Ho;Yoon, Gil-Sang;Shin, Gwang-Ho;Lee, Young-Min;Jung, Woo-Chul;Kang, Jeong-Jin;Jung, Tae-Sung;Kim, Dong-Sik;Heo, Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.115-122
    • /
    • 2007
  • Recently, remarkable progress has been made in both technology and production of optical elements including aspheric lens. Especially, requirements for machining glass materials have been increasing in terms of limitation on using environment, flexibility of material selection and surface accuracy. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP process was developed with an eye to mass production of precision optical glass parts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as camera, video camera, aspheric lens for laser pickup, $f-\theta$ lens for laser printer and prism, and me glass parts including diffraction grating and V-grooved base. GMP process consist a succession of heating, forming, and cooling stage. In this study, as a fundamental study to develop molds for GMP used in fabrication of glass lens, we conducted a glass lens forming simulation. In prior to, to determine flow characteristics and coefficient of friction, a compression test and a compression farming simulation for PBK40, which is a material of glass lens, were conducted. Finally, using flow stress functions and coefficient of friction, a glass lens forming simulation was conducted.

Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger (지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석)

  • Gil, Hu-Jeong;Lee, Kang-Ja;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation (수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Kim, Ju-Young;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

Properties of Synthesis (BaSr)$(CoFe)O_3$ Cathode for IT-SOFC by GNP (GNP 법을 이용한 저온형 SOFC용 (BaSr)$(CoFe)O_3$ 공기극의 제조 및 특성 평가)

  • Lee, Mi-Jai;Moon, Ji-Woong;Kim, Sei-Ki;Ji, Mi-Jung;Hwang, Hae-Jin;Lim, Yong-Ho;Choi, Byung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-54
    • /
    • 2006
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, for low temperature SOFC was prepared by the glycine-nitrate synthesis process (GNP). The characteristics of the synthesized powders were studied with controlling pH of a precursor. The synthesis BSCF powders with pH were agglomeration state and calcinations temperature has not influence on particles. Highly acidicprecursor solution increased a single phase forming the temperature. Also, synthesis BSCF powder was show result for thermal analysis and alteration of difference crystal with pH. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with $H^+$ insead of alkali and alkaline earth cations. In case of using precursor solution with pH $2{\sim}3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}?cm^2$ and $0.16{\Omega}?cm^2$, respectively.

  • PDF