• Title/Summary/Keyword: GHG reduction

Search Result 299, Processing Time 0.026 seconds

Estimation of Green-House-Gas emissions from domestic eel farm (뱀장어 양식장에서 발생하는 온실가스 배출량 산정)

  • Kim, Jong-Hyun;Lee, Kyounghoon;Lee, Dong-Gil;Park, Seong-Wook;Yang, Yong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • The purpose of the study is to estimate the Green-House-Gas (GHG) emissions from domestic eel farm in the water recirculation system or still-water system by the assessment of energy consumptions and GHG emissions for establishing to reduce standards of GHG from a sustainable perspective. GHG emission components as seeds, feed, fuel, electricity, fixed capital, fish respiration, and others were analysed at the different culture type between water recirculation system and still-water system by 3 stage farm size of small, medium, large scale. The result showed that the mean GHG emission of the eel farm was $18.7kg{\cdot}CO_2$ in the stage of production per fish 1kg at different culture type and farm size. Therefore it could be useful for policy, planning, and regulation of aquaculture development with establishing GHG reduction standards.

A study on the WTP estimates of green public buildings by the Contingent Valuation Method (조건부가치측정법(CVM)을 활용한 녹색 공공건축물 조성의 비용지불의사액 추정에 관한 연구)

  • Kim, Young-Hwan;Eo, Sang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2249-2254
    • /
    • 2015
  • Currently, green house gas(GHG) emissions in korea is aiming for a 30% reduction that it is compared to BAU by 2020. To this end, the government has proceed to a variety of reduction policies in GHG. In particular, GHG reduction effect in the public buildings is being a active discussion. It needs to reduce GHG for energy efficiency improvements in the way that public buildings are operated and maintained by public taxes. In this background, the purpose of this paper is to study environmental values judgement for non-market goods in the residents who use public buildings. The results of study are as follows; Respond to first suggested price was found the higher in price, the lower in willingness to pay(WTP). The result of second suggested price was as the same. Analysis of DBDC CVM revealed that income level shows a positive impact on WTP, but the other variables are irrelevant to WTP. Therefore, the citizen participation of the local population seems absolutely necessary to more effective GHG reduction of public sector in the future.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

A Study on Greenhouse Gas Emissions Characteristics of Local Government for the Achievement of the National Reduction Goal (국가 온실가스 감축목표 달성을 위한 지자체 온실가스 배출특성 연구)

  • Park, Ji Hui;Kim, Hyung Suk;Song, Kwon Bum;Yi, Sung Ju
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • In this study, GHG inventory on 17 local government between 2005 and 2014 is build up using 'GHG emission estimation guideline (2016. 2) for local government' developed and distributed by KECO. This covers all the sectors should be included in national GHG inventory, which are energy, industrial process, agriculture, AFOLU, and waste. In addition, six GHGs, carbon dioxide, metane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride declared in Kyoto protocol are estimated to reflect utmost precision. Indirect esissions, such as electricity, heat and waste generation are separately estimated as well as direct emissions to help local government to establish substantial and implementable reduction measures of GHGs.

A Basic Study on the Development of GHG Emission Factor from Diesel-Powered Railcars in Korea (국내 디젤철도차량의 온실가스 배출계수 개발방향 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Gyu;Rhee, Young-Ho;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2258-2261
    • /
    • 2010
  • Since national mid-term target for GHG reduction was determined in 2009, various efforts in transportations have been prepared. Generally, the GHG emission of transportation is calculated using the emission factor published from IPCC guideline(2006). However, it is necessary to develop new emission factors considering the properties of transportation as well as fuel. In Korean railroad, main emission sources are the consumption of diesel and electricity from railcar operation. The GHG emission of electric-powered railcars can be estimated using national electric emission factor, but diesel-powered railcars show different trends. The purpose of this study was to establish the development plans of emission factors for diesel-powered railcars. As a result, the emission factors of diesel-powered railcars were classified into railcar type, engine type and life cycle, notch, load, and traffic volume. In future, several emission factors with this category will be presented quantitatively through field tests with the order of priority.

  • PDF

Service Scenarios for Green House Gas Monitoring Service over NGN

  • Choi, Sam-Gil;Kim, Dong-Il;Lee, Soong-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.401-404
    • /
    • 2011
  • Considerations for green house gas (GHG) monitoring over next generation network (NGN) are regarded as a green convergence service for the successful reduction of GHG emission leading to resolve global warming issue in that NGN is expected to provide secure connections to fixed-and-mobile converged (FMC) features. Model-based scenario approach is an appropriate way to standardize and actualize the desired service. This paper first describes the service scenario of GHG monitoring service over NGN.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

A Study on the Development of National Impact Assessment Guidelines for Greenhouse Gas Reduction Measures of IMO (IMO 온실가스 감축 조치의 국가별 영향평가 가이드라인 개발 연구)

  • Kim, Bo-ram;Ahn, Young-gyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.286-294
    • /
    • 2021
  • The International Maritime Organization (IMO) has been seeking measures to prevent climate change caused by shipping and actively discussing the initial strategy of reducing ship greenhouse gas emissions adopted in 2018. Member states are proposing various reduction measures in the IMO's 5th International Working Group on the Reduction of Greenhouse-gas emissions. However, each member country's method of measuring impact assessment differs, making it impossible to objectively compare impact assessment by country. As such, various measures have been proposed by each country to reduce greenhouse gas emissions, and it is necessary to determine a standard impact assessment measurement method that can be applied to all countries before 2023, when IMO's greenhouse gas reduction strategy is implemented. Therefore, this study seeks to develop detailed guidelines for impact assessment to objectively compare the impact assessment results of ships' greenhouse gas reduction measures. Drawing detailed guidelines that can compare the effectiveness of each country's reduction strategies will enable the IMO leading marine environment GHG reduction.

Comparative Analysis of the 2030 GHG Reduction Target for Eleven Major Countries and Its Implications (주요국의 2030 온실가스 감축목표에 대한 비교분석과 시사점)

  • Oh, Jin-Gyu
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.357-368
    • /
    • 2018
  • The Paris Agreement, adopted in 2015, requires global mitigation actions by all countries, whether they are developed or developing countries. All member countries prepared and communicated a greenhouse gas reduction target, formally called the Intended Nationally Determined Contribution (INDC). There has been some concern regarding whether the INDCs communicated are sufficient to achieve the emissions reduction needed to hold the increase in global temperature to $2^{\circ}C$ above pre-industrial levels. How to address this emissions gap in an equitable and fair manner remains controversial. Beginning in the year 2023, global stocktaking under the Paris Agreement will be performed by the Conference of the Parties to assess progress towards temperature goals. The present study, based on various composite indicators reflecting equity, fairness, ability and efficiency, analyzed the GHG reduction targets of eleven major countries and the ambitiousness of these targets. Employing share indicators and comparative ratio indicators (resulting in eight composite indicators), this study showed that when share indicators are applied, Korea's appropriate reduction requirement rate is relatively low at 1~2%. However, when comparative ratio indicators are applied, Korea's appropriate reduction requirement rate increases dramatically to 6~11%. In a similar vein, when share indicators are applied, Korea's 2030 target is very ambitious compared to other countries, while the opposite is seen with comparative ratio indicators. This strongly suggests that Korea needs to apply more share indicators than comparative ratio indicators when discussing the equitable and ambitious role of Korea in the climate debate.

A quantitative analysis of greenhouse gases emissions from bottom pair trawl using a LCA method (전과정평가방법에 의한 쌍끌이 대형기선저인망의 온실가스 배출량 정량적 분석)

  • Yang, Yong-Su;Lee, Dong-Gil;Hwang, Bo-Kyu;Lee, Kyoung-Hoon;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.111-119
    • /
    • 2015
  • The negative factors of fishery in environmental aspect of view are Greenhouse gas emission problems by high usage of fossil fuel, destruction of underwater ecosystem by bottom trawls, reduction of resources by fishing and damage of ecosystem diversity. Especially, the Greenhouse gas emission from fisheries is an important issue due to Canc$\acute{u}$n meeting, Mexico in 1992 and Kyoto protocol in 2005. However, the investigation on the GHG emissions from Korean fisheries did not much carry out. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from fishery. Here, we calculated the GHG emission from Korean bottom pair trawl fishery using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficient of the fishery is also calculated. The GHG emissions from the representative fishes caught by bottom pair trawl will be dealt with. Furthermore, the GHG emissions for the edible weight of fishes are calculated with consideration to the different consuming areas and slaughtering process also. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.