• Title/Summary/Keyword: GHG Emissions Reduction Target

Search Result 46, Processing Time 0.027 seconds

THE SCENARIOS OF GREENHOUSE GAS REDUCTION ON SEOUL NATIONAL UNIVERSITY

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Kwon-Sik Song
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.213-218
    • /
    • 2013
  • To respond to global warming and climate change, Korean Government has implemented the GHG Target Management, which leads to a voluntary reduction in greenhouse gases from large businesses. Korean universities have put efforts on reducing GHG emissions and energy consumptions in the campuses, however, because of various activities and its characteristic of non-profit organization, establishing a long-term plan for reducing greenhouse gases is necessary. In this research, the Seoul National University's energy usage is analyzed and applicable technologies for reducing GHG emissions are extracted. Hence, three scenarios for performing the GHG Target Management are established. Proposed scenario is available for GHG Target Management and it would be expected to support decision- makings for reducing GHG emissions.

  • PDF

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

A Study on Strategy for Embodiment of Low Carbon City (저탄소도시 구현을 위한 전략수립에 관한 연구)

  • Baek, Cheong-Hoon;Park, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • The purpose of this study is to propose strategies for reducing greenhouse gas emissions on urban areas. This study is made up GHG emission estimation and emission prospect methods, setting of GHG reduction target, GHG reduction plan formulation and feasibility assessment. The significance of this study is as follows. First, this study provides the local government for the overall frame of low carbon strategies. Second, this study contribute to establishment of GHG emission reduction strategies in the local autonomy by providing GHG emission estimation and setting reduction target which is essential elements of reduction strategy. Third, we organize a reduction element for low carbon city embodiment and showed the way to assessment the reduction effect of these elements quantitatively.

Evaluation of CO2 Reduction Effected by GHG Reduction Policy of Vehicle (자동차 온실가스 저감정책에 따른 이산화탄소 저감 효과 평가)

  • Park, Yeon Jae;Kwon, Sang Il;Lee, Jae Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.280-288
    • /
    • 2016
  • Greenhouse gas (GHG) emissions have given rise to climate change which is one of the most serious environmental challenges that the world faces today. In response, Republic of Korea has proposed "Low Carbon, Green Growth" as a new economic paradigm accompanying with the ultimate aim of building a sense of responsibility for the environment. Korean government has set the ambitious national GHG emission reduction target which aims 37% reduction in the business-as-usual (BAU) level of 2030. The transportation sector plays a key role in this target. In the transportation sector, the GHG reduction target of 34.3% in the BAU level by 2020 has been allocated in order to consider the industrial specificity. Furthermore, it is known that the GHG reduction in the transportation sector has relatively minimal side effects compared to those of other sectors. In order to meet this national GHG reduction target, Korean government has set $CO_2$ emission regulation of vehicle for 2020. The purpose of this study is to evaluate the reduction effects by the average GHG regulation of vehicles. $CO_2$ emissions, between 2009 and 2013 were analysed by reduction measure such as technology improvement, light-weight, segment shift, diesel vehicle sales. During this period, $CO_2$ of vehicle was reduced every year by 19.9 g/km (i.e., 3.3% reduction per year). $CO_2$ reduction of imported vehicle is greater than domestic vehicle because of segment shift toward small size vehicle and higher diesel vehicle sales.

Generation Expansion Planning Model Supporting Diverse Environmental Policies for Reduction of Greenhouse Gases

  • Lee, Jeong-In;Lee, Il-Woo;Kim, Bal-Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.295-305
    • /
    • 2015
  • The purpose of this paper is to a develop model for generation expansion planning that can support diverse environmental policies for the reduction of greenhouse gases (GHGs) of South Korea. South Korea is required to reduce its GHG emissions by 30% from the BAU level by 2020. The Wien Automatic System Planning Package currently used in South Korea has limitations in terms of the application of renewable energy policies and GHG targets; this paper proposes the use of an equipment planning model named generation and transmission expansion program, which has been developed to resolve such limitations. For verification of the model, a case study on the 6th Basic Plan of Long-Term Electricity Supply and Demand has been conducted. The results show that for the year 2020 South Korea's annual GHG emissions will be 36.6% more than the GHG Target Management System (GHG TMS) target set for the same year (30%). To achieve the GHG TMS target, the costs involved amount to about 72 trillion KRW (70 billion USD). Consequently, the South Korean government needs to review the performability of this target.

Economic and Environmental Implications of the Voluntary GHG Reduction Targets of Major Countries (세계 주요국의 자발적 온실가스 감축목표가 경제와 환경에 미치는 파급효과와 시사점)

  • Lim, Jae-Kyu
    • Journal of Environmental Policy
    • /
    • v.9 no.3
    • /
    • pp.115-142
    • /
    • 2010
  • The voluntary mid-term greenhouse gas(GHG) emission reduction targets for 2020 among major developed and developing countries were evaluated by using the global computable general equilibrium(CGE) model. The GHG emissions of developed countries were estimated to be reduced by 14.0% from 1990 level, which implies that the GHG reduction targets of developed countries should be strengthened to reach agreement in future post-Kyoto negotiations. The voluntary participation of developing countries for GHG emissions reduction contributed to global GHG emissions reduction by 15.9% from 1990 levels, which were led by the participation of China and India. These outcomes imply that the reinforcement of GHG emission reduction targets in developed countries and the wider participation of developing countries will be necessary for the environmental effectiveness of the post-Kyoto regime. Emissions reduction based on voluntary targets will decrease the global real GDP by 1.18%.

  • PDF

Comparison of GHG Emission with Activity Data in Korean Railroad Sector (국내 철도부문의 활동도 자료에 따른 온실가스 배출량 비교 연구)

  • Lee, Jae-Young;Rhee, Young-Ho;Kim, Yong-Ki;Jung, Woo-Sung;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.861-864
    • /
    • 2011
  • Since national GHG reduction target by 2020 has been presented in Korea, the role of railroad has been reinforced within transport system due to the allocation of reduction target into sector. So, it is necessary to manage activity data systematically for the calculation of GHG emission in railroad. Now, the activity data of diesel consumption for NIR(National Inventory Report) are provided from oil supply and demand statistics. On the other hands, the activity data collected directly from railroad operating companies are used for GHG & Energy Target Management Act. This study aimed to assess the GHG emissions using two kinds of activity data related to the diesel consumption of railroad in 2009 and 2010. As a result, GHG emissions based on oil supply and demand statistics was 636 thousands ton $CO_{2e}$, but the activity data collected from railroad operating companies showed 649 thousands ton $CO_{2e}$ in 2009. Also, the gap of $CO_{2e}$ emission was increased in 2010. These trends were caused because oil supply and demand statistics included total diesel sales volume during 1 year and the activity data collected from railroad operating companies were the amount of diesel consumption only at railcar operation and maintenance step. In conclusion, it is important to develop the management and verification system of activity data with high reliability to substitute oil supply and demand statistics in railroad sector.

  • PDF

An Establishment of Greenhouse Gas Information System using Excel Spreadsheets (엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Process of Community-based Sustainable CO2 Management

  • Park, Jae-Hyun;Hong, Tae-Hoon
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, $CO_2$ management on a national level is still not an area of focus. Therefore, this study proposed a community-based $CO_2$ management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target $CO_2$ reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based $CO_2$ management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.