• Title/Summary/Keyword: GH5 endo-${\beta}$-1,4-glucanase

Search Result 4, Processing Time 0.016 seconds

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young;Shin, Dong-Ha;Jung, Sora;Kim, Hyangmi;Lee, Jong Suk;Cho, Han-Young;Bae, Kyung Sook;Sung, Chang-Keun;Rhee, Young Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.943-953
    • /
    • 2014
  • The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil;Kim, Yoon A;Kim, Sung Kyum;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.588-596
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

A Novel Endo-β-1,4-xylanase from Acanthophysium sp. KMF001, a Wood Rotting Fungus

  • Yoon, Sae-Min;Kim, Yeong-Suk;Kim, Young-Kyoon;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.670-680
    • /
    • 2018
  • Acanthophysium sp. KMF001, a wood rotting fungus, produces a strong crude enzyme complex that efficiently produces simple sugars from wood. The transcriptomic analysis of Acanthophysium sp. KMF001 identified 14 genes for putative glycoside hydrolases. Among them, isotig01043 was expressed heterogeneously in Escherichia coli BL21(DE3), and the expressed protein exhibited an endo-${\beta}$-1,4-xylanase activity which showed the optimum reaction at pH 5.0 and $30^{\circ}C$. The enzyme kinetic values of $K_m$ and $V_{max}$ were 25.92 mg/ml and $0.628{\mu}mole/mg/ml$, respectively. The enzymatic characteristics of the expressed xylanase showed a typical fungal xylanase. However, the bioinformatics analysis suggested that the protein encoded by isotig01043 was a novel xylanase based on a low identity when it was compared with the closest protein in the NCBI database and a similar protein domain with GH16_fungal_Lam16A_glucanase, which had not been earlier suggested as a xylanase.