• Title/Summary/Keyword: GGBS

Search Result 116, Processing Time 0.025 seconds

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

Multi-response optimization of FA/GGBS-based geopolymer concrete containing waste rubber fiber using Taguchi-Grey Relational Analysis

  • Arif Yilmazoglu;Salih T. Yildirim;Muhammed Genc
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.213-230
    • /
    • 2024
  • The use of waste tires and industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBS) in concrete is an important issue in terms of sustainability. In this study, the effect of parameters affecting the physical, mechanical and microstructural properties of FA/GGBS-based geopolymer concretes with waste rubber fiber was investigated. For this purpose, the effects of rubber fiber percentage (0.6%, 0.9%, 1.2%), binder (75FA25GGBS, 50FA50GGBS, 25FA75GGBS) and curing temperature (75 ℃, 90 ℃ and 105 ℃) were investigated. The Taguchi-Grey Relational Analysis (TGRA) method was used to obtain optimum parameter levels of rubber fiber geopolymer concrete (RFGC). The slump, fresh and hardened density, compressive strength, flexural strength, static and dynamic modulus of elasticity, ultrasonic pulse velocity (UPV) tests and scanning electron microscopy (SEM) analysis were performed on the produced concretes. The analysis of variance (ANOVA) method was used to statistically determine the effects of the parameters on the experimental results. A confirmation test was performed to test the accuracy of the optimum values found by the TGRA method. With the increase of GGBS percentage, the compressive strength of RFGC increased up to 196%. The increase in rubber fiber percentage and curing temperature adversely affected the mechanical properties of RFGC. As a result of TGRA, the optimum value was found to be A1B3C1. ANOVA results showed that the most effective parameter on the experimental results was the binder with 99% contribution percentage. It is understood from the SEM images that the optimum concrete had a denser microstructure and less capillary cracks and voids. For this study, the use of the TGRA method in multiple optimization has proven to provide very useful and reliable results. In cases where many factors are effective on its strength and durability, such as geopolymer concrete, using the TGRA method allows for finding the optimum value of the parameters by saving both time and cost.

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.

Evaluation of Daphniamagna for the Ecotoxicity Assessment of Alkali Leachate from Concrete

  • Choi, Jae Bang;Bae, Sung Min;Shin, Tae Young;Ahn, Ki Yong;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The cladoceran Daphniamagna has been used as an aquatic test species in aquatic toxicology. To evaluate the aquatic toxicity of leachate from concrete, the immobilization of D. magna was observed after treatment of various concentrations of leachate specimens. Reliabilities of the culture condition and the experimental protocol for acute toxicity test were successfully achieved from the standard toxicity test. The leachates were prepared from the mixture of Ordinary Portland Cement (OPC) and pozzolanic admixtures, Pulverised fuel ash (PFA), Ground granulated blast furnace slag (GGBS) and GGBS containing loess. Acute toxicity test showed 100% immobilization of D. magna for OPC or PFA. The leachates from OPC or PFA had high pH 10 to 12. However, GGBS and GGBS containing loess showed less toxicity according to the concentrations. Especially, immobilization was not observed at the concentrations below 12.5% of GGBS containing loess. Also the range of pH for these specimens was 8 to 9. This suggested that the use of loess as the admixture in concrete may be useful to reduce eco-toxicity of leachates from concrete. This our study provided the harmfulness of the alkali leaching from concrete in aquatic environment and the usefulness of D. magna to evaluate the toxicity of leachates from concrete.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Behavior of GGBS concrete with pond ash as a partial replacement for sand

  • Maheswaran, J.;Chellapandian, M.;Kumar, V.
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.233-242
    • /
    • 2022
  • An attempt is made to develop an eco-friendly concrete with ground granulated blast furnace slag (GGBS) and pond ash as partial replacement materials for cement and fine aggregate, respectively without compromising the strength and durability. Sixteen concrete mixes were developed by replacing cement and fine aggregate by GGBS and pond ash, respectively in stages of 10%. The maximum replacement levels of cement and fine aggregates were 50% and 30% respectively. Experimental results revealed that the optimum percentage of GGBS and pond ash replacement levels were 30% and 20% respectively. The optimized mix was used further to study the flexural behavior and durability properties. Reinforced Concrete (RC) beams were cast and tested under a four-point bending configuration. Also, the specimens prepared from the optimized mix were subjected to alternate wet and dry cycles of acid (3.5% HCl and H2SO4) and sulphate (10% MgSO4) solutions. Results show that the optimized concrete mix with GGBS and pond ash had a negligible weight loss and strength reduction.

A fundamental Study on the properties of Concrete by using the Rapid Hardening Blast Furnace Slag Cement (조강슬래그시멘트를 이용한 콘크리트의 기초물성에 관한 연구)

  • 김진춘;최광일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.72-77
    • /
    • 1995
  • Blast-furnace slag cement has been used widely as a structural material due to the latent hydraulicity of granulated ground blast furnace slag(GGBS)for a long time as The wall as ordinary portland cement. In this study, based on the fundamental investigation on the high strength and high durable concrete using the high fineness GGBS the following remarks can be made. 1) The average desired strenth of concrete is Or=600~800kg/$\textrm{cm}^2$. 2) The above high strength concrete using the high fineness GGBS is more workable than those using only OPC. 3) The adiabatic temperature and drying shringkage decrease, so the density and resistance to sea water attack increase as results. 4)The unit cement content and unit air entrained admixture at the same desired strength of concrete decrease, so the economical high strength concrete can be manufactured from using the high fineness GGBS.

  • PDF

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Geopolymer composite binders of soda-lime glass (GP) & Ground Granulated Blast Furnance Slag (GGBS): The strength & microstructure

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.19-20
    • /
    • 2019
  • This study investigated the possibility of strength development by incorporating the slighly coarser soda-lime glass powder (GP) with 0-100 wt.% of Ground Granulated Blast Furnace Slag (GGBS) to synthesis GGBS based geopolymer. Compressive strength, water absorption & apparent porosity, were experimentally determined. To determine the homogeneity of mix, the microstructure & elemental composition of samples were studied using SEM-EDS. Study reveals the improvement in strength and reduction in porosity for the samples containing up to 30% GP. Furthermore, the microstructure analyses confirmed the development of denser and compact structure with the incorporation of glass powder up to 30%.

  • PDF