• Title/Summary/Keyword: GGBS, concrete

Search Result 91, Processing Time 0.028 seconds

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

Corrosion Resistance of Blended Concrete and Its Application to Crack Healing (혼합 콘크리트의 부식 저항성과 균열 치유 적용)

  • Lee, Chang-Hong;Kim, Tae-Sang;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.689-696
    • /
    • 2009
  • In this study, electro-deposition method was applied to heal cracks in various blended concrete. The performance of the method was indirectly monitored by measuring impressed voltage, electrolyte, galvanic current monitoring, linear polarization resistance, and directly by image analysis of the cracks. The indirect and direct monitoring values are compared to develop guidelines for relating the indirect measures to actual crack healing. As a result, It was found that impressed voltage was convergence to 2.9V after 20000 minutes. From the galvanic current test results of artificial crack healing, the corrosion resistance showed that the order of 0.4 $>$ 0.6 $>$ 0.5 water to cement ratio. Furthermore, in view of binder, the corrosion resistance order was calculated OPC $>$ 60%GGBS $>$ 10%SF $>$ 30%PFA. Finally, It was found that 76.47% of healed crack surface calculated from the artificial crack healing technique using electrochemical deposition method.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

An Experimental Study on the Compressive Strength of Ultra High Strength Concrete with Vacuum Water Absorbing Curing (진공포수양생을 적용한 초고강도 페이스트의 압축강도 발현에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.27-28
    • /
    • 2019
  • In this study, the characteristics of compressive strength of ultra high strength concrete supplied with moisture from outside by vacuum water absorbing curing method were investigated. Specimens were prepared by replacing the binder(Silifa fume and GGBS) by 25 wt% with respect to the weight of cement at W/B 0.16. Each specimen was subjected to water Vacuum absorbing curing time 0 min, 30 min, 60 min, 90 min and 120 minutes immediately after the demolding. Curing was performed at $20^{\circ}C$ Air-dry curing, $90^{\circ}C$ steam curing, $90^{\circ}C$ steam curing and $180^{\circ}C$ autoclave curing. Experimental results showed that water absorbing degree increased with increasing water absorbing curing time, and BS25 sample had higher water absorbing degree than SF25 sample at same time. Compressive strength tended to increase up to about 40% in water absorbing degree, but compressive strength decreased again in water absorbing more than 40%.

  • PDF

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

Setting Properties of GGBS Powder According to Replacement of Ratio of CaO-Al2O3 Based Inorganic Binder (CaO-Al2O3계 무기결합재 사용량에 따른 고로슬래그 미분말의 응결특성)

  • Choi, Duck-Jin;Lee, Young-Jae;Choi, Se-Jin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.78-79
    • /
    • 2013
  • As a part of study to maximize the amount used of the ground granulated blast-furnace slag, the study deals with setting properties of paste that is mixed the ground granulated blast-furnace slag with CaO-Al2O3 based inorganic blinder. The results of the experiment show that the setting time is most fast in the mix of 25% rate of CaO-Al2O3 based inorganic blinder. It is generally needed 2 hours for work time in precast concrete products. In this study, this requirement is achieved when using the retarder of 0.5%.

  • PDF

A generalized explainable approach to predict the hardened properties of self-compacting geopolymer concrete using machine learning techniques

  • Endow Ayar Mazumder;Sanjog Chhetri Sapkota;Sourav Das;Prasenjit Saha;Pijush Samui
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.279-296
    • /
    • 2024
  • In this study, ensemble machine learning (ML) models are employed to estimate the hardened properties of Self-Compacting Geopolymer Concrete (SCGC). The input variables affecting model development include the content of the SCGC such as the binder material, the age of the specimen, and the ratio of alkaline solution. On the other hand, the output parameters examined includes compressive strength, flexural strength, and split tensile strength. The ensemble machine learning models are trained and validated using a database comprising 396 records compiled from 132 unique mix trials performed in the laboratory. Diverse machine learning techniques, notably K-nearest neighbours (KNN), Random Forest, and Extreme Gradient Boosting (XGBoost), have been employed to construct the models coupled with Bayesian optimisation (BO) for the purpose of hyperparameter tuning. Furthermore, the application of nested cross-validation has been employed in order to mitigate the risk of overfitting. The findings of this study reveal that the BO-XGBoost hybrid model confirms better predictive accuracy in comparison to other models. The R2 values for compressive strength, flexural strength, and split tensile strength are 0.9974, 0.9978, and 0.9937, respectively. Additionally, the BO-XGBoost hybrid model exhibits the lowest RMSE values of 0.8712, 0.0773, and 0.0799 for compressive strength, flexural strength, and split tensile strength, respectively. Furthermore, a SHAP dependency analysis was conducted to ascertain the significance of each parameter. It is observed from this study that GGBS, Flyash, and the age of specimens exhibit a substantial level of influence when predicting the strengths of geopolymers.