• Title/Summary/Keyword: GFRP-ribbed bar

Search Result 7, Processing Time 0.021 seconds

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

Study of Application of Salt Resistance Concrete Beam Reinforced with Glass Fiber Reinforced Polymer-Ribbed Bar as a Member of Marine Structure (GFRP 보강 내염성 콘크리트 보의 해양구조부재로서의 적용성 검토)

  • Kim, Chung-Ho;Hwang, Yun-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.94-99
    • /
    • 2008
  • Three types of salt resistant concrete beams reinforced with glass fiber reinforced polymer-ribbed bars (GFRP-ribbed bars) were selected, and their applicable properties were investigated with the goal of improving the problem of capacity deterioration in marine structures due to sea water corrosion. In this study, the structural behaviors were similar to RC beams in relation to the development of the strength and stiffness up to the generation of the initial crack. After the growth of this initial crack, the structural properties decreased owing to a sudden loss of bond strength. Also these beams showed the trends of brittle failure. As a result, it was confirmed that a GFS beam replaced with Fly Ash (20%) and Silica Fume (5%) has the best application as a marine structural element.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

PVC and POM gripping mechanisms for tension testing of FRP bars

  • Basaran, Bogachan;Yaka, Harun;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • The present study pertains to the introduction of two new types of grip adaptor for universal testing machines, namely Polyvinyl Chloride (PVC) and Polyoxymethylene (POM) grip adaptors, and their application to tension testing of FRP bars with different fiber and surface finish types. The tabs are connected to the FRP bar sample with the help of mechanical anchors, i.e. bolts. These new adaptors offer vital superiorities over the existing end tab designs (anchors with filling material or mechanical anchorage), including the reduction in the time and labor for production, reusability and the mild nature, i.e. low hardness of the tab material, which retards and even prevents peeling and crushing in the gripping regions of an FRP sample. The methods were successfully applied to FRP bars with different types of fiber (CFRP, GFRP and BFRP) and different types of surface texture (ribbed, wrapped, sand-coated and wound). The test results indicated that the both types of end caps prevented slip of the bar, crushing and peeling in the gripping zone. The mechanical properties from the material tests with the new caps were in perfect agreement with the ones from the material tests with steel tubular caps.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Bond Performance of FRP Reinforcing Bar by Geometric Surface Change (콘크리트 보강용 FRP 보강근의 표면형상 변화에 따른 부착 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.69-77
    • /
    • 2004
  • FRP rebar has low bond performance than steel rebar. Usually, FRP rebar has about 60% of bond strength of steel rebar. Without adequate bond to concrete, the full composite action between reinforcement and concrete matrix can not be achieved. Therefore, FRP rebars must also have surface deformations that provide good bond to concrete. The purpose of this research was decided an optimum surface deformation patterns through bond test of FRP rebar. Eighteen surface deformation patterns of FRP rebar with widely different geometries were investigated. Based on the test results, we established optimum surfale deformation pattern. Bond tests were performed for three types of surface deformation patterns of FRP rebar including sand coated rebar, ribbed rebar, and wrapped and sand coated rebar that commercially available, and two types of FRP rebar including CFRP, GFRP rebars that optimum surface deformation pattern is applied. According to bond test results, FRP rebars that optimum surface deformation pattern is applied were found to have better bond strength with concrete than currently using FRP rebar.