• Title/Summary/Keyword: GFRP rebars

Search Result 49, Processing Time 0.027 seconds

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars (GFRP 보강근의 부착파괴면)

  • Lee, Jung-Yoon;Yi, Chong-Ku;Kim, Tae-Young;Park, Ji-Sun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.383-391
    • /
    • 2008
  • The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.

Experimental study on flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1129-1144
    • /
    • 2015
  • Based on the experiment, this paper focuses on studying flexural behavior of splicing concrete-filled glass fiber reinforced polymer (GFRP) tubular composite members connected with steel bars. The test results indicated the confinement effects of GFRP tubes on the concrete core in compression zone began to produce, when the load reached about $50%P_u$ ($P_u$-ultimate load), but the confinement effects in tensile zone was unobvious. In addition, the failure modes of composite members were influenced by the steel ratio of the joint. For splicing unreinforced composite members, the steel ratio more than 1.96% could satisfy the splicing requirements and the steel ratio 2.94% was ideal comparatively. For splicing reinforced specimen, the bearing capacity of specimen with 3.92% steel ratio was higher 21.4% than specimen with 2.94% steel ratio and the latter was higher 21.2% than the contrast non-splicing specimen, which indicated that the steel ratio more than 2.94% could satisfy the splicing requirements and both splicing ways used in the experiment were feasible. So, the optimal steel ratio 2.94% was suggested economically. The experimental results also indicated that the carrying capacity and ductility of splicing concrete-filled GFRP tubular composite members could be improved by setting internal longitudinal rebars.

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Bond Test of GFRP Rebars with Shape and Surface Treatments (형상과 표면처리에 따른 GFRP 바의 부착성능)

  • You Young Jun;Park Ji-Sun;Park Young-Hwan;You Young-Chan;Kim Keung-Hwan;Kim Hyeong-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.329-332
    • /
    • 2005
  • R.C. bridges may require strengthening during the service life. The main cause of durability problem of R.C. bridges is the corrosion of reinforcing steel. For this reason, researches to solve the problem have been conducted but the achievements are just for improving, not the solution. Fiber Reinforced Polymers are recognized as the alternative materials for solving the problem due to the excellent corrosion-resistant property, light-weight and higher strength than steel. This paper presents experimental results and theoretical consideration of bond test for new type GFRP rebar

  • PDF

An Experimental Study on the Long-Term Deflection of Concrete Beams with GFRP Rebars (FRP 보강 콘크리트 보의 장기처짐에 관한 실험연구)

  • Park, Ji-Sum;You, Young-Jun;Park, Young-Hwan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • This study is to investigate experimentally the long-term deflection of concrete beams with glass fiber reinforced polymer (GFRP) reinforcing bars subjected to the sustained flexural load for periods of up to 6 months. A total of four beams were tested. All beams were designed with net span of 2,700 mm and rectangular cross-section of 200 mm width and 300 mm depth. From the test results the time-dependent deflection of concrete beams with GFRP bars was about 40 to 70% of the initial deflection. As well as this paper compares the long-term deflection calculated by 440.1R-06 design guide and that of tested beams. The comparison indicated that the calculated long-term deflection overestimate the observed long-term deflection of concrete beams with FRP rebars.

  • PDF

Experimental and analytical studies on one-way concrete slabs reinforced with GFRP molded gratings

  • Mehrdad, Shokrieh Mahmood;Mohammad, Heidari-Rarani
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.569-584
    • /
    • 2009
  • Corrosion of steel rebars in bridge decks which are faced to harsh conditions, is a common problem in construction industries due to the porosity of concrete. In this research, the behavior of one-way concrete slabs reinforced with Glass fiber reinforced polymer (GFRP) molded grating is investigated both theoretically and experimentally. In the analytical method, a closed-form solution for load-deflection behavior of a slab under four-point bending condition is developed by considering a concrete slab as an orthotropic plate and defining stiffness coefficients in principal directions. The available formulation for concrete reinforced with steel is expanded for concrete reinforced with GFRP molded grating to predict ultimate failure load. In finite element modeling, an exact nonlinear behavior of concrete along with a 3-D failure criterion for cracking and crushing are considered in order to estimate the ultimate failure load and the initial cracking load. Eight concrete slabs reinforced with steel and GFRP grating in various thicknesses are also tested to verify the results. The obtained results from the models and experiments are relatively satisfactory.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

Bond Behavior of GFRP Rebars Embedded in Concrete Under Cyclic Loading (반복하중을 받는 GFRP 보강근의 부착특성)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.101-104
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Fiber Reinforced Polymer (FRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of FRP. However, there remain various aspects of FRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between FRP and concrete. In this study, the bond-behavior of FRP bars in concrete is investigated via the pullout test with three varying parameters: surface condition of FRP bars, concrete compression strength, and cyclic loading patterns. As a result of experiment, the bond strength of GFRP increased with the concrete compression strength increasing and decreased with applying cyclic load.

  • PDF

Bond Performance of FRP Reinforcing Bar by Geometric Surface Change (콘크리트 보강용 FRP 보강근의 표면형상 변화에 따른 부착 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.69-77
    • /
    • 2004
  • FRP rebar has low bond performance than steel rebar. Usually, FRP rebar has about 60% of bond strength of steel rebar. Without adequate bond to concrete, the full composite action between reinforcement and concrete matrix can not be achieved. Therefore, FRP rebars must also have surface deformations that provide good bond to concrete. The purpose of this research was decided an optimum surface deformation patterns through bond test of FRP rebar. Eighteen surface deformation patterns of FRP rebar with widely different geometries were investigated. Based on the test results, we established optimum surfale deformation pattern. Bond tests were performed for three types of surface deformation patterns of FRP rebar including sand coated rebar, ribbed rebar, and wrapped and sand coated rebar that commercially available, and two types of FRP rebar including CFRP, GFRP rebars that optimum surface deformation pattern is applied. According to bond test results, FRP rebars that optimum surface deformation pattern is applied were found to have better bond strength with concrete than currently using FRP rebar.

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.