• Title/Summary/Keyword: GFRP Reinforcing bar

Search Result 28, Processing Time 0.026 seconds

Bond Performance of FRP Reinforcing Bar for Concrete Structures after Chemical Environmental Exposure (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 부착 성능)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • FRP reinforcing bars(rebars) are produced through a variety of manufacturing process includes pultrusion, and filament winding and braiding etc. Each manufacturing method produces a different surface condition of FRP rebar. The surface properties of FRP rebar is an important property for mechanical bond with concrete. Current methods of providing surface deformation to FRP rebars include helical wrapping, surfaces and coating and rib molding. The problem with the helical wrapping method is that it can not provide enough surface deformation for good bond and it can be easily sheard off from the FRP rebars. Sand coating and rib molding provide surface deformation only to the outer FRP skins. Therefore, FRP rebar has about 60% of bond strength of steel rebar. The main objective was to evaluate the bond properties of FRP rebar after environmental exposure. Five types of FRP rebar includes CFRP ISO, GFRP Aslan, AFRP Technora CFRP(Korea), and GFRP(Korea) rebars performed direct bond tests. Also, FRP rebar bond specimens were subjected to exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. According to bond test results, CFRP(Korea) and CFRP(Korea) rebars were found to have better bond strength with concrete than previous FRP rebars. Also, FRP(Korea) rebar had more than about 70% in bond strength of steel rebar.

A Study on the Durability of Glass Fiber Reinforced Plastics Rebars (GFRP 리바의 내구성에 관한 연구)

  • Moon, C.K.;Kim, Y.H.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • The mechanical properties of glass fiber reinforced polymer reinforcing bars(rebar) in various environment conditions such as moisture, chloride, alkali and freeze-thaw actions at temperature ranging from room temperature($25^{\circ}C$) to high temperature of up to $80^{\circ}C$ have been studied. The test results indicated that tensile strength and interfacial shear strength of GFRP bar were decreased with the increasing of temperature and holding time of each environment condition. The degradation in alkali environment. was more serious than those in the other environments.

  • PDF

Bond Characteristics of Glass Fiber Reinforced Polymer Rebar according to the Bar Location (GFRP 보강근의 단면 위치에 따른 부착특성)

  • Park, Ji-Sun;Park, Young-Hwan;You, Young-Jun;Hwang, Geum-Sic;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.197-200
    • /
    • 2006
  • The bond characteristics of three different types of glass fiber reinforced polymer(GFRP) reinforcing bars with different surface deformations were studied experimentally. Each specimen consisted of a concrete prism, 150 by 150 mm on each edge, with the longer axis in the vertical direction. Two rebars were embedded in each specimen, perpendicular to the longer axis and parallel to and equidistant from the sides of the prism. In vertical direction, one rebar was located at 75 mm from the bottom of the prism, and the other 225 mm from the bottom. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the recommendations of CSA Standard S806-02.It was found that the bottom reinforcements showed higher bond stress than that of the top rebars.

  • PDF

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Bond Performance of FRP Reinforcing Bar by Geometric Surface Change (콘크리트 보강용 FRP 보강근의 표면형상 변화에 따른 부착 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.69-77
    • /
    • 2004
  • FRP rebar has low bond performance than steel rebar. Usually, FRP rebar has about 60% of bond strength of steel rebar. Without adequate bond to concrete, the full composite action between reinforcement and concrete matrix can not be achieved. Therefore, FRP rebars must also have surface deformations that provide good bond to concrete. The purpose of this research was decided an optimum surface deformation patterns through bond test of FRP rebar. Eighteen surface deformation patterns of FRP rebar with widely different geometries were investigated. Based on the test results, we established optimum surfale deformation pattern. Bond tests were performed for three types of surface deformation patterns of FRP rebar including sand coated rebar, ribbed rebar, and wrapped and sand coated rebar that commercially available, and two types of FRP rebar including CFRP, GFRP rebars that optimum surface deformation pattern is applied. According to bond test results, FRP rebars that optimum surface deformation pattern is applied were found to have better bond strength with concrete than currently using FRP rebar.

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola;Salsavilca, Jhoselyn;Yacila, Jhair;Camata, Guido
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.