• 제목/요약/키워드: GFRP

검색결과 709건 처리시간 0.035초

내구특성 파악을 위한 GFRP 보강근의 촉진실험 연구 (Accelerated Test Program for Durability Characteristics of GFRP Rebars)

  • 김형열;유영준;박영환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.157-164
    • /
    • 2006
  • 본 논문에서는 다양한 환경인자에 노출된 상용 유리섬유강화(GFRP) 보강근의 내구특성에 대하여 기술하였다. 촉진실험방법을 이용하여 2종류의 GFRP보강근에 대하여 내구성 실험을 실시하였다. 총 264개 시편을 염화물 알칼리, 동결융해 상태에 최고 132일간 노출시켰다. CFRP 보강근의 내구특성은 촉진 실험된 보강근의 인장강도, 수평전단강도, 탄성계수를 원래 상태의 보강근의 결과와 비교하여 파악하였다. 실험결과에 따르면 촉진 실험된 GFRP 보강근의 재료적 특성은 심각하게 감소되었다. 단기 내구성 실험결과를 이용하여 GFRP 보강근의 장기 열화특성을 추정하였다.

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

외피형태에 따른 GFRP 보강근의 겹침 이음길이 (Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bars with Different Surface Design)

  • 최동욱;이창호;하상수;박영환;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.449-452
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars with two different to surface type were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length. Two different GFRP bar surfaces were tested: (1) spiral-type GFRP bars and (2) sand coated GFRP bars. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was reached using the lap splice length of $30d_b$. Splice failure was observed in the specimen with the lap splice length of $20d_b$. For the spiral-type and sand coated GFRP bars, the tensile strength developed in the GFRP bars decreased with decreasing splice lengths. Development of the cracks on beam surfaces was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

액정을 이용한 GFRP의 열적시험법에 관한 연구 (Thermal Inspection of GFRP using Liquid Crystal)

  • 김영환;권오양
    • 비파괴검사학회지
    • /
    • 제10권2호
    • /
    • pp.50-55
    • /
    • 1990
  • Flaws in GFRP(Glass Fiber Reinforced Plastics) were thermally detected using cholesteric liquid crystals. Presence of flaws changes the thermal conductivity of GFRP, and disturbs heat flow. When a uniform heat source is applied, the surface temperature of flawed region is different from that of sound region. The surface temperature distributions were measured by thermo-optic properties of liquid crystal. Since the colors of liquid crystal indicate temperature distribution of GFRP surface, the thermal disturbance by flaws could be detected. The locations of flaws in GFRP could be determined from the distribution of liquid crystal colors.

  • PDF

GFRP-데크플레이트로 보강한 합성 슬래브의 휨성능 평가에 관한 실험적 연구 (Experimental Study on Flexural Performance of Composite Slabs Reinforced with GFRP-Deckplate)

  • 최봉섭
    • 한국산학기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.165-170
    • /
    • 2009
  • 본 논문은 GFRP-데크와 콘크리트를 합성한 1방향 슬래브 시스템을 제안하고자 기존의 철근트러스-데크 합성슬래브와의 비교실험을 통하여 휨성능에 대한 구조실험을 수행하였다. 실험결과 휨성능은 제안된 GFRP 합성슬래브의 시험체들이 비교시험체들 보다 우수하게 나타나, 재료의 적절한 품질관리가 이루어진다면 GFRP가 갖고 있는 내부식성의 장점을 살릴 수 있는 배기가스나 염분에 많이 노출된 건축물에 매우 효과적으로 적용할 수 있을 것으로 판단된다.

RTM 공정에 의해 생산된 GFRP 보강근의 콘크리트 부착특성에 관한 실험연구 (An Experimental Study on the Bond Characteristics of GFRP Rebar to Concrete Produced by RTM (Resin Transfer Molding) Process)

  • 박지선;유영찬;박영환;유영준;김형열;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.297-300
    • /
    • 2005
  • The bond characteristics of GFRP(glass fiber reinforced polymer) rods with various surface deformation produced by RTM(resin transfer molding) process were analyzes experimentally. Two types of GFRP rods with different surface deformation manufactured by RTM process in domestic area and two types of GFRP rebars imported were considered in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that deformed-type GFRP rod manufactured by RTM process showed the highest bond strength among test specimen. But, wave-type GFRP rod made by RTM process show the lowest value due to the splitting failure of concrete caused by the wedge action of waved surfaces on GFRP rods.

  • PDF

Direct Tensile Test of GFRP Bar Reinforced Concrete Prisms

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Su
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.323-326
    • /
    • 2005
  • Uniaxial tension test of Glass Fiber Reinforced Polymer (GFRP) bar reinforced concrete prisms was performed. The objective was to investigate the adequate cover thickness of the GFRP rebars. The tension stiffening effect of GFRP bar reinforced concrete was also studied. The test variables included rebar types (conventional steel rebar and two different GFRP rebars) and cover thicknesses (five different cover thicknesses ranging between 1-3db). Normal strength concrete was used. Cracking patterns on concrete surface and cracking loads were careful1y observed during the direct tensile test. The test results indicated that the adequate cover thickness of the GFRP rebars may even be larger than that of the steel rebars and that the cover thickness of 2db commonly specified for the GFRP rebars may not be large enough. The tension stiffening effect of the GFRP rebars was also quantified and documented from the test results.

  • PDF

새로운 GFRP접합 시스템을 이용한 멤브레인 파빌리옹 (The mobile and modular GFRP-membrane-structure with the new innovative connection system)

  • ;박돈우;;황경주
    • 한국공간구조학회지
    • /
    • 제5권2호
    • /
    • pp.7-15
    • /
    • 2005
  • Currently, the structural material, namely glass fiber reinforced polymer (GFRP) is focused on innovative structure due to lightness, excellent workability and noncorrosive characteristics, etc. However, the lack of GFRP connection technology produces only an imitation of steel and wood structures. This uses univentive design principles as well as unsuitable material applications, causes tons of surplus of materials to be wasted, and results in uneconomical structures, because the characteristics between steel and GFRP are completely different. Thus, this research develops the new, innovative GFRP connection system with considerations of the characteristics of GFRP and adopts it to a mobile und modular membrane pavilion.

  • PDF

GFRP로 보강된 RC보의 계면박리파괴 해석모델 (An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP)

  • 김규선;심종성
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.