• Title/Summary/Keyword: GFP Gene

Search Result 302, Processing Time 0.027 seconds

The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells (레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들)

  • Lee, Jun Ah;Lee, Kang-Min;Lee, Hyun Jae;Lee, Yun Jeong;Kim, Dong Ho;Lim, Jung Sub;Park, Kyung-Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.1011-1017
    • /
    • 2007
  • Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

Construction of the Silkworm, Bombyx mori, with a Green Fluorescence by Autographa californica Nuclear Polyhedrosis Virus

  • Jin, Byung-Rae;Yun, Eun-Young;Kang, Seok-Woo;Yoon, Hyung-Joo;Kim, Keun-Young;Kim, Ho-Rak;Je, Yeon-Ho;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.149-153
    • /
    • 2000
  • We have constructed a recombinant baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), containing green fluorescent protein (GFP) gene from the jellyfish, Aequorea victoria, and transferred it into the domestic silkworm Bombyx mori larvae for the production of visible transgenic silkworm of living organism. When one day-old fifth instar female larvae were injected with the recombinant AcNPV of 1x10$^{5}$ plaque forming units, the bright glow of GFP was detected in the recombinant AcNPV-infected larvae and in the newly hatched larvae of the next generation. Our findings demonstrate that the viral replication was detected in the silkworm treated with the recombinant ACNPV and the gfp gene was expressed under the transcriptional control of the polyhedrin gene promoter, Furthermore, the gfp gene was transmitted to the next generation, suggesting that this system can be applied for the development of transgenic silkworms.

  • PDF

Production of Bovine Transgenic Cloned Embryos using Prourokinase-Transfected Somatic Cells: Effect of Expression Level of Reporter Gene (인간 Prourokinase가 도입된 체세포를 이용한 소 형질전환 복제란 생산: 표지유전자 발현정도에 따른 효과)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;G. Jang;Park, E. S.;S. K. Kang;Lee, B. C.;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2002
  • Human Prourokinase (proUK) offers potential as a novel agent with improved fibrin specificity and, as such, may offer advantages as an attractive alternative to urokinase that is associated with clinical benefits in patients with acute peripheral arterial occlusion. For production of transgenic cow as human proUK bioreacotor, we conducted this study to establish efficient production system for bovine transgenic embryos by somatic cell nuclear transfer (NT) using human prourokinase gene transfected donor cell. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human prourokinase target gene into a pcDNA3 plasmid. Cumulus cells were used as donor cell and transfected with the expression plasmid using the Fugene 6 as a carrier. To increase the efficiency for the production of transgenic NT, development rates were compared between non-transfected and transfected cell in experiment 1, and in experiment 2, development rates were compared according to level of GFP expression in donor cells. In experiment 1, development rates of non-transgenic NT embryos were significantly higher than transgenic NT embryos (43.3 vs. 28.4%). In experiment 2, there were no significant differences in fusion rates (85.4 vs. 78.9%) and cleavage rates (78.7 vs. 84.4%) between low and high expressed cells. However, development rates to blastocyst were higher in low expressed cells (17.0 vs. 33.3%), and GFP expression rates in blastocyst were higher in high expressed cells (75.0 vs. 43.3%), significantly.

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

  • Jung, Min;Shin, Sun-Hee;Park, Jeong-Mi;Lee, Sung-Nam;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacteriummediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of $T_0$, $T_1$ and $T_2$ peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.

The Use of a Tobacco mosaic virus-Based Expression Vector System in Chrysanthemum

  • Park, Minju;Baek, Eseul;Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.429-433
    • /
    • 2017
  • Chrysanthemums (Chrysanthemum morifolium) are susceptible to tobacco mosaic virus (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector. Viral replication, movement and GFP expression by TMV-GFP were verified in upper leaves of chrysanthemums up to 73 days post inoculation (dpi) by RT-PCR. Neither wild-type TMV nor TMV-GFP induced symptoms. GFP fluorescence was seen in the larger veins of the inoculated leaf, in the stem above the inoculation site and in petioles of upper leaves, although there was no consistent detection of GFP fluorescence in the lamina of upper leaves under UV. Thus, a TMV-based expression vector can infect chrysanthemum and can be used for the in vivo study of gene functions.

Effects of TESTIN Gene Expression on Proliferation and Migration of the 5-8F Nasopharyngeal Carcinoma Cell Line

  • Zhong, Zhun;Zhang, Fei;Yin, Shu-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2555-2559
    • /
    • 2015
  • Purpose: To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. Materials and Methods: The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. Results: A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. Conclusions: TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.

Construction of FMDV VP1 Gene Using Artificial DNA Synthesis and Transformation of Nicotiana tabacum Using Agrobacterium Vector System (유전자 인공합성을 이용한 구제역 유전자 VP1의 제작과 Agrobacterium Vector System을 이용한 담배 형질전환)

  • Lee, Eun-Jung;Lim, Hee-Young;Kim, Sung-Hoon;Kang, Kyung-Sun;Park, Young-Doo;Yun, Choong-Hyo;Yoon, Byoung-Su
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.285-293
    • /
    • 2004
  • FMDV is a viral pathogen that caused foot-and-mouth disease in animals. VP1 is a major capsid protein of FMDV. It is known as one of best materials for the FMDV diagnosis and for the development of protein vaccine. In this study, 633 bp of VP1 gene was modified for the expression of VP1 in plant, based on the VP1 DNA sequence from FMDV taiwan O type and from FMDV isolated vietnam. The. deduced DNA fragment was artificially synthesized using the multiple fragment extension with long-nucleotides. A new plant transgenic vector system, pCAMBIA139011 was constructed on the basis of pBI12l and pCAMBIA1390. Using this vector system and GFP gene or modified VP1 gene, each target gene was introduced into Nicotiana tabacum. The insertion of whole target gene was successfully confirmed in each transgenic plant named GFP-A7 and VP1-4, respectively. The expression level of each gene was estimated by RT-PCR and Real-Time PCR using VP1, GFP specific primers.

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

Effect of IRES Controlled Reporter Gene on Screening and Production of Recombinant Human EPO Proteins from Cultured CHO Cells

  • Lee Hyun Gi;Park Jin-Ki;Kim Sung-Woo;Ko Eun-Mi;Kim Byoung-Ju;Jo Su-Jin;Byun Sung-June;Yang Boh-Suk;Chang Won-Kyong;Lee Hoon-Taek;Lee Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.81-85
    • /
    • 2006
  • This study was conducted to examine the effect of IRES controlled reporter gene on screening and production of recombinant human erythropoietin (EPO) proteins from cultured CHO cells. The cDNA was cloned for EPO from human liver cDNA Using site-directed mutagenesis, we generated recombinant human EPO (rhEPO) with two additional N-glycosylations (Novel erythropoiesis-stimulating protein: NESP). Wild type hEPO and NESP were cloned into expression vectors with GFP reporter gene under regulatory control of CMV promoter and IRES so that the vectors could express both rhEPO and GFP. The expression vectors were transfected to cultured CHO-K1 cells. Under microscopy, expression of GFP was visible. Using supernatant of the culture, ELISA assay, immunocytochemistry and in vitro assay using EPO dependant cell line were performed to estimate biological activity to compare the production characteristics (secretion levels, etc.) between rhEPO and NESP. The activity of NESP protein, obtained by mutagenesis, was described and compared with its rhEPO counterpart produced under same conditions. Although NESP had less secretion level in CHO cell line, the biological activity of NESP was greater than that of rhEPO. These results are consistent with previous researches. We also demonstrated that rhEPO and GFP proteins expressed simultaneously from transfected CHO cell line. Therefore we conclude that use of GFP reporter gene under IRES control could be used to screen and produce rhEPO in cultured CHO cells.

Generation of a Constitutive Green Fluorescent Protein Expression Construct to Mark Biocontrol Bacteria Using P43 Promoter from Bacillus subtilis

  • Kong, Hyun-Gi;Choi, Ki-Hyuck;Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Hyoung-Ju;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.136-141
    • /
    • 2009
  • Marking biocontrol bacteria is an essential step to monitor bacterial behavior in natural environments before application in agricultural ecosystem. In this study, we presented the simple green fluorescent protein (GFP) reporter system driven by the promoter active in Bacillus species for tagging of the biocontrol bacteria. A constitutive promoter P43 from Bacillus subtilis was fused to an enhanced promoterless gfp gene by overlap extension PCR. The GFP expression was demonstrated by the high fluorescence intensity detected in B. subtilis and Escherichia coli transformed with the P43-gfp fusion construct, respectively. The GFP reporter system was further investigated in two bacterial biocontrol strains B. licheniformis and Pseudomonas fluorescens. When the reconstructed plasmid pWH34G was introduced into B. licheniformis, GFP level measured with the fluorescence intensity in B. licheniformis was almost equivalent to that in B. subtilis. However, GFP expression level was extremely low in other biocontrol bacteria P. fluorescens by transposon based stable insertion of the P43-gfp construct into the bacterial chromosome. This study provides information regarding to the efficient biomarker P43-gfp fusion construct for bio-control Bacillus species.