• Title/Summary/Keyword: GFP(green fluorescence protein)

Search Result 87, Processing Time 0.024 seconds

Generation and Characterization of Cell-Permeable Greem Fluorescent Protein Mediated by the Basic Domain of Human Immunodeficiency Virus Type 1 Tat

  • Park, Jin-Seu;Kim, Kyeong-Ae;Ryu, Ji-Yoon;Choi, Eui-Yul;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.797-804
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1) Tat is one of the viral gene products essential for HIV replication. The exogenous Tat protein is transduced through the plasma membrane and then accumulated in a cell. The basic domain of the Tat protein, which is rich in arginine and lysine residues and called the protein transduction domain (PTD), has been identified to be responsible for this transduction activity. To better understand the nature of the transduction mediated by this highly basic domain of HIV-1 Tat, the Green Fluorescent Protein (GFP) was expressed and purified as a fusion protein with a peptide derived from the HIV-1 Tat basic domain in Escherichia coli. The transduction of Tat-GFP into mammalian cells was then determined by a Western blot analysis and fluorescence microscopy. The cells treated with Tat-GFP exhibited dose- and time-dependent increases in their intracellular level of the protein. the effective transduction of denatured Tat-GFP into both the nucleus and the cytoplasm of mammalian cells was also demonstrated, thereby indicating that the unfolding of the transduced protein is required for efficient transduction. Accordingly, the availability of recombinant Tat-GFP can facilitate the simple and specific identification of the protein transduction mediated by the HIV-1 Tat basic domain in living cells either by fluorescence microscopy or by a fluorescence-activated cell sorter analysis.

  • PDF

Production of chickens with green fluorescent protein-knockin in the Z chromosome and detection of green fluorescent protein-positive chicks in the embryonic stage

  • Kyung Soo Kang;Seung Pyo Shin;In Su Ha;Si Eun Kim;Ki Hyun Kim;Hyeong Ju Ryu;Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.973-979
    • /
    • 2023
  • Objective: The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which is the most efficient and reliable tool for precisely targeted modification of the genome of living cells, has generated considerable excitement for industrial applications as well as scientific research. In this study, we developed a gene-editing and detection system for chick embryo sexing during the embryonic stage. Methods: By combining the CRISPR/Cas9 technical platform and germ cell-mediated germline transmission, we not only generated Z chromosome-targeted knockin chickens but also developed a detection system for fluorescence-positive male chicks in the embryonic stage. Results: We targeted a green fluorescent protein (GFP) transgene into a specific locus on the Z chromosome of chicken primordial germ cells (PGCs), resulting in the production of ZGFP-knockin chickens. By mating ZGFP-knockin females (ZGFP/W) with wild males (Z/Z) and using a GFP detection system, we could identify chick sex, as the GFP transgene was expressed on the Z chromosome only in male offspring (ZGFP/Z) even before hatching. Conclusion: Our results demonstrate that the CRISPR/Cas9 technical platform with chicken PGCs facilitates the production of specific genome-edited chickens for basic research as well as practical applications.

Generation of a recombinant rabies virus expressing green fluorescent protein for a virus neutralization antibody assay

  • Yang, Dong-Kun;Kim, Ha-Hyun;Park, Yu-Ri;Yoo, Jae Young;Park, Yeseul;Park, Jungwon;Hyun, Bang-Hun
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.56.1-56.10
    • /
    • 2021
  • Background: Fluorescent antibody virus neutralization (FAVN) test is a standard assay for quantifying rabies virus-neutralizing antibody (VNA) in serum. However, a safer rabies virus (RABV) should be used in the FAVN assay. There is a need for a new method that is economical and time-saving by eliminating the immunostaining step. Objectives: We aimed to improve the traditional FAVN method by rescuing and characterizing a new recombinant RABV expressing green fluorescent protein (GFP). Methods: A new recombinant RABV expressing GFP designated as ERAGS-GFP was rescued using a reverse genetic system. Immuno-fluorescence assay, peroxidase-linked assay, electron microscopy and reverse transcription polymerase chain reaction were performed to confirm the recombinant ERAGS-GFP virus as a RABV expressing the GFP gene. The safety of ERAGS-GFP was evaluated in 4-week-old mice. The rabies VNA titers were measured and compared with conventional FAVN and FAVN-GFP tests using VERO cells. Results: The virus propagated in VERO cells was confirmed as RABV expressing GFP. The ERAGS-GFP showed the highest titer (108.0 TCID50/mL) in VERO cells at 5 days post-inoculation, and GFP expression persisted until passage 30. The body weight of 4-week-old mice inoculated intracranially with ERAGS-GFP continued to increase and the survival rate was 100%. In 62 dog sera, the FAVN-GFP result was significantly correlated with that of conventional FAVN (r = 0.95). Conclusions: We constructed ERAGS-GFP, which could replace the challenge virus standard-11 strain used in FAVN test.

GFP Gene Transfected Cell 과 Non Tranfsfected Cell 의 핵이식후 발달

  • 양병철;임기순;성환후;임석기;이상기;오현주;이연근;박진기;장원경
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.34-34
    • /
    • 2002
  • 핵이식 방법은 형질전환 동물을 생산하기 위한 여러 가지 방법 중 최근에 많이 이용되고 있다. 본 실험은 형광단백질 유전자 (green fluorescence protein, GFP)가 도입된 태아섬유아세포를 이용 핵이식을 하여 형질전환 수정란의 생산효율을 검토하기 위하여 실시하였다. GFP 유전자는 임신 45-55 일령의 태아섬유아세포 (KbFF3)에 electroporation방법으로 transfection을 실시하였다. (중략)

  • PDF

Generation of a Constitutive Green Fluorescent Protein Expression Construct to Mark Biocontrol Bacteria Using P43 Promoter from Bacillus subtilis

  • Kong, Hyun-Gi;Choi, Ki-Hyuck;Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Hyoung-Ju;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.136-141
    • /
    • 2009
  • Marking biocontrol bacteria is an essential step to monitor bacterial behavior in natural environments before application in agricultural ecosystem. In this study, we presented the simple green fluorescent protein (GFP) reporter system driven by the promoter active in Bacillus species for tagging of the biocontrol bacteria. A constitutive promoter P43 from Bacillus subtilis was fused to an enhanced promoterless gfp gene by overlap extension PCR. The GFP expression was demonstrated by the high fluorescence intensity detected in B. subtilis and Escherichia coli transformed with the P43-gfp fusion construct, respectively. The GFP reporter system was further investigated in two bacterial biocontrol strains B. licheniformis and Pseudomonas fluorescens. When the reconstructed plasmid pWH34G was introduced into B. licheniformis, GFP level measured with the fluorescence intensity in B. licheniformis was almost equivalent to that in B. subtilis. However, GFP expression level was extremely low in other biocontrol bacteria P. fluorescens by transposon based stable insertion of the P43-gfp construct into the bacterial chromosome. This study provides information regarding to the efficient biomarker P43-gfp fusion construct for bio-control Bacillus species.

Expression of the Green Fluorescent Protein (GFP) in Tobacco Containing Low Nicotine for the Development of Edible Vaccine

  • Kim Young-Sook;Kim Mi-Young;Kang Tae-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yang Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • This study was carried out to obtain basic information for gene manipulation in potent edible tobacco (Nicotiana tabacum cv. TI 516). N. tabacum cv. TI 516 is a plant for a possible candidate to use as an edible vaccine, since it contains a low level of nicotine. The effective plant regeneration system through leaf disc culture was achieved using a MS basal medium supplemented with 0.1 mg $1^{-1}$ NAA and 0.5 mg $1^{-1}$ BA. In order to transform the N. tabacum cv. TI 516 with the green fluorescent protein (GFP) gene, Agrobacterium tumefaciens LBA 4404 containing the GFP gene was used. Genomic PCR confirmed the integration of the GFP gene into nuclear genome of transgenic plants. Expression of the GFP gene was identified in callus, apical meristem and root tissue of transgenic N. tabacum cv. TI 516 plants using fluorescence microscopy. Western blot analysis revealed the expression of GFP protein in the transgenic edible tobacco plants. The amount of GFP protein detected in the transgenic tobacco plants was approximately 0.16% of the total soluble plant protein (TSP), which was determined by ELISA.

Expression of Green Fluorescent Protein in Both Spodoptera frugiperda Cells and Bombyx mori Larvae by Ac-Bm Hybrid Virus

  • Jin, Byung-Rae;Yoon, Hyung-Joo;Yun, Eun-Young;Kang, Seok-Woo;Cho, Eun-Sook;Kang, Seok-Kwon
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • We have expressed GFP in Sf9 and Bm5 cells or Bombyx mori larvae by using Ac-Bm hybrid virus capable of replicating in both Bm5 and Sf9 cells. Genomic DNA of Ac-Bm hybrid virus expressing ${\beta}$-galactosidase was cotransfected with baculovirus transfer vector containing GFP gene, pBacPAK-GFP in Sf9 cells. The Ac-Bm hybrid virus harboring GFP was named as Ac-Bm hybrid virus-GFP. The Ac-Bm hybrid virus-GFP-infected insect cells were easily selected by detecting the emission of GFP from each well of cell culture dish on the UV illuminator. GFP produced by Ac-Bm hybrid virus-GFP in Sf9 and Bm5 cells or B. mori larvae was confirmed by SDS-PAGE and Western blot analysis using GFP antibody. In addition, B. mori larvae infected with Ac-Bm hybrid virus-GFP was apparently appeared fluorescence from the whole body at S days postinoculation. The fluorescence of GFP from the hemolymph and fat body of B. mori larvae infected with Ac-Bm hybrid virus-GFP was also observed by fluorescence microscope. In conclusion, our results demonstrated that in baculovirus expression vector system, use of Ac-Bm hybrid virus have an additional advantage of expanded host range for producing recombinant proteins.

  • PDF

Development of a Monitoring Vector for Leuconostoc mesenteroides Using the Green Fluorescent Protein Gene

  • Lee, Kwan-Hoon;Park, Woo-Jung;Kim, Joo-Yun;Kim, Han-Geun;Lee, Jung-Min;Kim, Jeong-Hwan;Park, Jeong-Woo;Lee, Jong-Hoon;Chung, Sung-Kyun;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1213-1216
    • /
    • 2007
  • The vector pCW5 with plasmid pC7, originally isolated in Lactobacillus paraplantarum C7 derived from kimchi, was constructed using a p32 strong promoter, the pC7 replicon, and green fluorescent protein (GFP) as the reporter. The constructed vector was transformed into E. coli and Leuconostoc mesenteroides, and GFP expression detected using a Western blot analysis. GFP fluorescence was recognized in E. coli and Leuconostoc mesenteroides using a confocal microscope. In addition, GFP fluorescence was also clearly detected in several industrially important lactic acid bacteria (LAB), including Lactobacillus bulgaricus, Lactobacillus paraplantarum, and Lactobacillus plantarum. Thus, pCW5 was shown to be effective for Leuconostoc mesenteroides when using GFP as the reporter, and it can also be used as a broad-host-range vector for other lactic acid bacteria.

Improved T-Vector for the Cloning of PCR DNA Using Green Fluorescent Protein

  • Park, Kill-Soon;Park, Seong-Weon;Choi, Soon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.264-266
    • /
    • 2000
  • A new GFP-based T-vector for cloning of PCR products was developed by using a green fluorescent protein (GFP) as a mafker. In order to facilitate the DNA inserts, multiple restriction sites, SP6 and T7 RNA polymerase promoter sites, were introduced close to the PCR DNA insertion site of a pCRGv vector. The XcmI-digested pHNT plasmid can be used to clone a 3' A-overhanged PCR DNA amplified by Taq DNA polymerase. A potential method of easing some difficulties from its use along with its cost savings proveded by this vector are likely to lead to the replacement of other T-vectors for PCR DNA cloning.

  • PDF

Generation of Protein Lineages with new Sequence Spaces by Functional Salvage Screen

  • Kim, Geun-Joong;Cheon, Young-Hoon;Park, Min-Soon;Park, Hee-Sung;Kim, Hak-Sung
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.77-80
    • /
    • 2001
  • A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available, and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions, and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is firstly constructed by genetically disrupting a predetermined region(s) of the protein, and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from E. coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E. coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional property. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.

  • PDF