• 제목/요약/키워드: GFAAS

검색결과 14건 처리시간 0.022초

흑연료 원자흡수 분광법에 의한 혈중의 납, 카드뮴 정량을 위한 외부정도관리 시료제조 및 분석 (Preparation and analysis of lyophilized whole blood as external quality control materials for Pb and Cd determination by graphite furnace atomic absorption spectrometry)

  • 이공주;임흥빈
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.273-279
    • /
    • 1995
  • 납과 카드뮴을 포함하는 여러 가지 농도의 동결건조된 혈액이 외부정도관리 시료로서 제조되었다. 이 시료들은 흑연료 원자흡수분광법(GFAAS)을 이용하여 성능이 파악되었다. 매트릭스 개선제로서 0.1% ammonium dihydrogen phosphate와 0.1% Triton X-100을 사용하여 섭씨 600 내지 650도의 회화온도에서 혈액에 있는 납과 카드뮴의 정량 분석을 위한 GFAAS의 최적 분석조건이 얻어졌다. 제조된 혈액의 균질도와 안정도는 최적화된 분석조건에서 연구되었다.

  • PDF

Graphite Furnace Atomic Absorption Spectrophotometric Determination of Trace Horseradish Peroxidase Using Nanosilver

  • Jiang, Zhi-Liang;Tang, Ya-Fang;Wei, Lin;Liang, Ai-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2732-2736
    • /
    • 2011
  • In pH 4.2 HAc-NaAc buffer solution, horseradish peroxidase (HRP) catalyzed $H_2O_2$ oxidation of nanosilver to form $Ag^+$. After centrifugation, $Ag^+$ in the supernatant can be measured by graphite furnace atomic absorption spectrophotometry (GFAAS) at the silver absorption wavelength of 328.1 nm. When HRP concentration increased, the $Ag^+$ concentration in the supernatant increased, and the absorption value enhanced. The HRP concentration in the range of 0.84-50 $ng{\cdot}mL^{-1}$ was linear to the enhanced absorption value (${\Delta}A$), with a regression equation of ${\Delta}A$=0.012C+0.11, correlation coefficient of 0.9988, and detection limit of 0.41 $ng{\cdot}mL^{-1}$ HRP. The proposed GFAAS method was used to detect HRP in waste water samples, with satisfactory results.

Smith-Hieftje(SH) 및 $D_2$ 바탕보정장치가 부착된 흑연로 원자흡수분광법을 이용한 혈액 중 카드뮴 분석 (Analysis of Cadmium in Blood using SH(Smith-Hieftje) and $D_2$ Arc Background Correction Methods by Graphite Furnace Atomic Absorption Spectrophotometer)

  • 이석기;김풍작;정창웅
    • 대한화학회지
    • /
    • 제40권3호
    • /
    • pp.196-201
    • /
    • 1996
  • 혈액 중 미량 카드뮴 분석에 전기로 장치가 부착된 원자 흡수 분광광도계(GFAAS)를 사용하였다. 시료를 1% Triton X-100으로 10배 희석시킨 다음 회화 온도 500$^{\circ}C$에서 Fork platform흑연 튜브를 사용하여 분석하였으며, 결과 처리는 피크 면적법과 피크높이법으로 비교하였다. 양쪽 모두 우수한 값을 얻을 수 있었으며 SH 바탕보정법과 $D_2$ 바탕보정법에 의하여 얻은 검출한계는 각각 0.02ng/mL와 0.01ng/mL이고 상대 표준편차는 1.0ng/mL 종도에서 5%이내였다. 분석의 정확성을 평가하기 위하여 노르웨이 Nycomed Pharma사의 Seronorm (Trace Elements Whole Blood)을 분석, 비교 검토 하였다.

  • PDF

흑연로 원자흡수분광법에 의한 혈중 카드뮴 분석시 매트릭스 개선제(matrix modifier)의 역할 (The role of matrix modifier and for the determination of cadmium in blood by graphite furnace atomic absorption spectrometry)

  • 유광식;김창복;권진기
    • 분석과학
    • /
    • 제8권1호
    • /
    • pp.9-16
    • /
    • 1995
  • 본 연구에서는 혈액 중 저농도의 카드뮴 분석을 위하여 시료를 1% Triton X-100으로 5배 희석시킨 다음에 흑연로 원자흡수분광법을 이용하여 분석하였다. 매트릭스 개선제로서 2% $(NH_4)_2HPO_4$와 L'vov platform이 삽입된 pyrocoated 흑연로를 사용하여 비교적 높은 회화온도 ($600^{\circ}C$)에서 카드뮴의 손실을 최대한 억제시키면서, 혈액내의 방해 성분으로 인한 영향을 감소시켰다. 분석의 정확성을 평가하기 위하여 NIST 표준물질(혈청 중 Cd) 및 외부 분석 기관(일본)에서 분석한 결과를 비교 검토하였다. 이 실험에서 얻은 상대 표준편차는 1.0ng/ml 농도에서 10% 정도이며 검출한계값은 0.1ng/ml였다.

  • PDF

SR 바탕보정법과 $D_2$ 바탕보정법에 의한 혈액 중 Pb 분석 (Analysis of Lead in Blood using SR(self-reversal) and $D_2$ Arc Background Correction Methods)

  • 이석기;김풍작
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.427-434
    • /
    • 1994
  • GFAAS(graphite furnace atomic absorption spectrophotometer)를 이용하여 혈액 중 납을 분석할 때, 납은 비교적 휘발성 원소인 관계로 바탕선이 높아지므로 희화 온도를 일정 온도 이상으로 높일 수 없었다. 그래서 종래에는 매트릭스 변형제를 사용하여 희화 온도를 $700^{\circ}C$까지 올려서 희화시켜야 바탕선이 안정되었다. 본 연구에서는 광온도 및 전류 제어 장치가 부착된 기기(Shimadzu, AA-6501S)를 사용하여 온도조절을 단시간에 정확히 함으로써 매트릭스 변형제를 사용하지 않고 Triton X-100으로만 희석하여 분석해도 희화 온도 $550^{\circ}C$ 부근에서 바탕선이 안정됨을 알았다. 또한 자동 바탕 보정 장치인 $D_2$ arc형과 SR(self reversal)법을 비교해 본 결과, 같은 농도에서의 흡광도는 $D_2$ arc형이 높았으나 BGC(background correction)값은 SR법이 높음을 알았다.

  • PDF

Chemiluminescence System with Air Pump as a Sensor for Determination of Metal Levels in Rain

  • Hong, Hyuck-Gi;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1937-1940
    • /
    • 2005
  • A lab-made chemiluminescence system with air pump was developed for monitoring of some metal levels in rain. The air pump enabled injection of 17.7 $\mu$g samples into a glass cell filled with luminol-$H_2O_2$ reagent of typically 300 $\mu$L for chemiluminescence measurement. The monitored trend of total metal ions in the rain collected in our campus was compared with analytical results of each metal ion from GFAAS. The system was also demonstrated to determine $Cr^{6+}$ by reduction to $Cr^{3+}$ using $SnCl_2$. The limit of detection for $Cr^{6+}$ obtained by 4 measurements was 85.0 pg $mL^{-1}$ with a relative standard deviation of 3.4%. Although this system doesn’t have selectivity due to the characteristics of chemiluminescence, application of it to environmental monitoring as a sensor for some transition metal ions was demonstrated.

흑연로 원자흡수분광법에 의한 혈액중 카드뮴 정량분석 (A Comparative Analysis of Whole Blood Cadmium by Atomic Absorption Spectrophotometry with a Graphite Furnace)

  • 박종안;오혜정;이종화
    • 한국산업보건학회지
    • /
    • 제6권2호
    • /
    • pp.301-312
    • /
    • 1996
  • This study was performed to search a optimal analyzing method of cadmium in whole-blood. Cadmium was determined by graphite furnace atomic absorption spectrometry(GFAAS). We investigated the effect of ashing temperature on the absorbance of cadmium in a simple dilution(ten-fold) method with triton X-100 and matrix modifier methods treated with $NH_4H_2PO_4$(1 and 3%) and $Pd(NO_3)_2$(0.00l and 0.005%) as matrix modifier. We also compared the reported reference values of standard blood with values resulted from optimal analyzing conditions of this study. In case of a simple dilution method, when ashing temperature was set at $450^{\circ}C$, the absorbance of sample and background were $0.334{\pm}0.012$ and $1.382{\pm}0.245$, respectively. Background level was higher than the value(0.8) that can be corrected by $D_2$ background correction method. As ashing temperature was rised to $500^{\circ}C$, the absorbance of sample and background were $0.178{\pm}0.008$ and $0.711{\pm}0.223$ respectively. The higher ashing temperature($450^{\circ}C-650^{\circ}C$) was, the lower the absorbance of sample was. In case of a matrix modifier method with $NH_4H_2PO_4$(1 and 3%), when ashing temperature was rised from $500^{\circ}C$ to $650^{\circ}C$, the absorbance of sample slightly changed. The absorbances of sample at $600^{\circ}C$ were $0.230{\pm}0.017$ and $0.137{\pm}0.012$, respectively. These values were larger than that of simple dilution method. But the absorbance of background was higher than the level that can be corrected by $D_2$ method. In case of a matrix modifier method with $Pd(NO_3)_2$(0.001 and 0.005%), the absorbance of sample and background were higher than those of other methods and were stable and reproducible. When ashing temperature was over $550^{\circ}C$, the absorbance of sample was significantly decreased. In case of 0.005% $Pd(NO_3)_2$ carbon residue remained in graphite tube affected the absorbance of sample and background. From these results, We propose that in case of a simple dilution(ten-fold) method with triton X-100 ashing temperature must be maintained below $400^{\circ}C$. In order to diminish the absorbance of background, the alternative method is attenuation of injection volume or multiplication of dilution ratio. We recommend $Pd(NO_3)_2$ than $NH_4H_2PO_4$ as a matrix modifier. In case of a matrix modifier method with $Pd(NO_3)_2$ ashing temperature might be maintained below $550^{\circ}C$.

  • PDF

Synthesis of a New α-Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination

  • Ghiasvand, A. R.;Shadabi, S.;Kakanejadifard, A.;Khajehkoolaki, A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.781-785
    • /
    • 2005
  • A fast and reliable method for the selective separation and preconcentration of $Cu^{2+}$ ions using homogeneous liquid-liquid extraction was developed. A new $\alpha$-dioxime derivative (2H-1,4-benzothioazine-2,3(4H)dionedioxime, Dioxime I) was synthesized and investigated as a suitable selective complexing ligand for $Cu^{2+}$ ions. Zonyl FSA (FSA) was applied as a phase-separator agent under the slightly acidic pH conditions. Under the optimal experimental conditions ([FSA] = 3.2% w/v, [THF] = 19.5% v/v, [Dioxime I] = 1.9 ${\times}\;10^{-3}$ M, and pH = 4.7), 10 ${\mu}g\;of\;Cu^{2+}$ in 5.2 mL aqueous phase could be extracted quantitatively into 80 $\mu$L of the sedimented phase. The maximum concentration factor was 65-fold. The limit of detection of the proposed method was 0.005 ng $mL^{-1}$. The reproducibility of the proposed method, on the 10 replicate measurements, was 1.3%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of $Cu^{2+}$ ions were investigated. The proposed method was applied to the extraction and determination of $Cu^{2+}$ ion in different synthetic and natural water samples.

Micro Pre-concentration and Separation of Metal Ions Using Microchip Column Packed with Magnetic Particles Immobilized by Aminobenzyl Ethylenediaminetetraacetic Acid

  • Kim, Y.H.;Kim, G.Y.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.905-909
    • /
    • 2010
  • Magnetic beads (Dynabeads$^{(R)}$) embedded in ~1 micron size polystyrene beads bearing surface carboxylic acid groups were modified with aminobenzyl ethylenediaminetetraacetic acid (ABEDTA) to concentrate or separate metal ions using pH gradients on micro and nano scales. The immobilization of ABEDTA was achieved by amide formation. The presence of the metal chelating functional group in the fully deprotonated form was confirmed by FT-IR. The chelation efficiency of beads was tested by determining metal ions in supernatant using GFAAS when pH gradients from 3 to 7. Mixtures of Cu and Mg and of Cd and Mn (at 10 ng/mL of metal) were separated as the difference in formation constant with the functional group of ABEDTA. The separation was repeated twice with relative standard deviation of <18%. A polydimethylsiloxane (PDMS) microchip column packed with EDTA-coated magnetic beads was optimized to concentrate metal ion for practical applications by eluting a Cu solution of micro scale at pH 3.

Analysis of Mobile Lead in Soil Using Carboxylated Magnetic Particle

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok;Schaeffer Andreas
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.89-92
    • /
    • 2005
  • The analytic possibility of mobile lead contained in soil has been studied using carboxylated magnetic beads. Extraction of heavy metal was performed to contaminated soil that has been collected and supplied for tests. As experiment materials, soil sample, distilled water and magnetic beads were only used. It means that the lead was extracted under neutral condition. In this condition, only the mobile fraction of lead could be extracted by magnetic beads. The mobile lead in the soil was quickly combined with magnetic beads in the mixture process. Then, the magnetic beads were dissolved into acids after collection by external magnetic force, and the lead combined with the beads was eluted and analyzed by Graphite Furnace Atomic Absorption Spectroscopy (GFAAS). In the results of extraction experiments for 3 sandy soils, the efficiency using beads was similar to or higher than that of EDTA (Ethylendiamintetraacetic acid), which is normally used for analyzing mobile heavy metal concentration in soil. With this, it was shown that this method is a more accurate and simple method to analyze mobile lead when analyzing mobile heavy metal concentration in sandy soil, rather than conventional method using EDTA.