• Title/Summary/Keyword: GF(Glass Fiber)

Search Result 73, Processing Time 0.025 seconds

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix (유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가)

  • Kim, Neul-Sae-Rom;Jang, Yeong-Jin;Lee, Eun-Soo;Kwon, Dong-Jun;Yang, Seong Baek;Lee, Jungeon;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Fiber-reinforced thermoplastic composites are applied to transport industries to lightweight of body, and applications will be expanded gradually. In this study, the impregnation and mechanical properties of continuous glass fiber (GF) reinforced polycarbonate (PC) composites were evaluated with different molecular weights of PC. The continuous GF reinforced PC composite were prepared by using GF fabric and PC film via continuous compression molding method. The melting flow index and tensile strength of PC matrix were evaluated with different molecular weights. Mechanical properties (tensile, flexural, and compressive) and pore rate of GF/PC composite were evaluated with different molecular weights of PC. The fracture behavior was analyzed to fracture surface of GF/PC composite using FE-SEM images. As these results, it was condition of representing the best mechanical property that the GF/PC composite was prepared by using PC of 20,000 g/mol as matrix.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Tensile Fracture Behavior of Glass Fiber/Polypropylene Composites for Various Fiber Volume Fraction (섬유함유율에 따른 GF/PP 복합재료의 인장파괴거동)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • The main goal of this work is to study the effect of glass fiber volume fraction on the result of tensile test with respect to glass fiber/polypropylene(GF/PP) composites. The tensile test and failure mechanisms of GF/PP composites were investigated in the fiber volume fraction range from 10% to 30%. The tensile strength and the fracture strength increased with the increasing of the fiber volume fraction in the tested range. Fiber pull-out and debonding of this composites increased with the fiber volume fraction in thc tested range. The major failure mechanisms were classified into the debonding, the fiber pull out, the delamination and the matrix deformation.

A Study on the Three Phase Glass Fiber/Nylon 6/Polyproylene Composites (나일론 6과 폴리프로필렌 수지에 유리섬유가 보강된삼상 복합재료에 관한 연구)

  • 서문호
    • The Korean Journal of Rheology
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 1998
  • A pultrusion resin impregnation (PRI) die, which has been developed recently in our laboratory, was used to pre-pare various composite system. The continuous fiber reinforced composites of glass fiber/polypropylene(GFPP) and glass fiber/polyamide 6 (GFPA) were first manufactured by means of the PRI die and then cut into chopped pellets of predet-ermined length. These pellets and either virgin or modified thermoplastic resin were melt-mixed by a twin screw extruder to prepare GF/PA/PP and GF/PA/PPMA system. The mechanical properties of these blends were investigated and discussed in terms of their morphological observations. These preliminary results revealed that this new impregnation die could be suc-cessfully applied to produce prepregs suitavle for the final shaping process.

  • PDF

Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites (유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향)

  • Vu, Cuong Manh;Nguyen, Liem Thanh;Nguyen, Thai Viet;Choi, Hyoung Jin
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites (유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구)

  • Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF

Effect of Temperature on Tensile Fracture Behavior of Glass Fiber Polypropylene Composites (온도변화에 따른 GF/PP복합재료의 인장파괴거동)

  • 고성위;엄윤성;허경환;김엄기;김형진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.240-245
    • /
    • 2001
  • The tensile strength and failure mechanisms of glass fiber polypropylene (GF/PP) composites are investigated in the temperature range from ambient to 8$0^{\circ}C$. The tensile strength increases as fiber volume fraction ratio increase. The tensile strength shows a maximum at ambient temperature, and it tens to decrease as temperature goes up. Major failure mechanisms of GF/PP composites can be classified as fiber matrix debonding, fiber pull-out, delamination and matrix deformation.

  • PDF