• 제목/요약/키워드: GDF11

검색결과 13건 처리시간 0.021초

개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석 (Parabiosis and Blood Exchange Techniques in Aging Research)

  • 정경태
    • 생명과학회지
    • /
    • 제33권2호
    • /
    • pp.208-215
    • /
    • 2023
  • 최근 수십년간 노화연구의 영역은 유전자 수준에서부터 세포 수준을 거쳐 혈액을 교환하는 in vivo 모델까지 진보를 거듭하면서 발전하고 있다. 예쁜꼬마선충에서 수명을 연장시킬 수 있는 유전자의 존재가 알려지면서, 유전체학, 단백질체학, 대사체학, 전사체학과 같은 다양한 분석방법이 사용되면서 보다 다양한 노화 연관 표적분자들이 발견되었다. 따라서, 표적분자들 간의 상호관계에 대한 연구결과도 증가하고 있다. 또한, 두 실험동물을 외과적으로 결합시킨 개체병렬결합 방법을 사용한 노화연구로 노화 현상을 역행시킬 수도 있는 인자가 보고되었고, 젊은 개체의 혈액 내에 존재할 수 있는 노화 역행 인자를 찾기 위한 더 정확하고, 효과적인 연구로 확장되면서, 노화연구의 방법에 새로운 패러다임이 확립되었다. 2022년 실험동물에 정교하게 혈액을 교환할 수 있는 장치에 대한 논문이 발표되었고, 이 장치를 사용한 연구가 노화 역행에 영향을 줄 수 있는 새로운 결과를 제시하였다. 새롭게 고안된 장치와 그로 인한 결과뿐만 아니라 젊은 혈액 또는 조건화된 혈액을 주입하여 얻은 최신 연구결과로 처음 발표되었던 GDF11 외에도 혈액 내에 존재하는 노화 역행 후보물질로서 β2m, TIMP2, VCAM1, Gpld1, clusterin과 같은 혈액 내 용해성 인자뿐만 아니라 mcicroglia 세포와 neuroinflammation과 같은 생화학적 현상이 직접적으로 노화요인으로 증명되고 있다. 이 총설에서는 이 같은 노화연구에 대한 최신 결과에 대해 논의하고자 한다.

Diethylnitrosamine 처리 후 병리학적 결과를 기초로 한 마우스 간에서의 유전자 발현 분석 (Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis)

  • 김지영;윤석주;박한진;김용범;조재우;고우석;이미가엘
    • Toxicological Research
    • /
    • 제23권1호
    • /
    • pp.55-63
    • /
    • 2007
  • Diethylnitrosamine (DEN) is a nitrosamine compound that can induce a variety of liver lesions including hepatic carcinoma, forming DNA-carcinogen adducts. In the present study, microarray analyses were performed with Affymetrix Murine Genome 430A Array in order to identify the gene-expression profiles for DEN and to provide valuable information for the evaluation of potential hepatotoxicity. C57BL/6NCrj mice were orally administered once with DEN at doses of 0, 3, 7 and 20 mg/kg. Liver from each animal was removed 2, 4, 8 and 24 hrs after the administration. The histopathological analysis and serum biochemical analysis showed no significant difference in DEN-treated groups compared to control group. Conversely, the principal component analysis (PCA) profiles demonstrated that a specific normal gene expression profile in control groups differed clearly from the expression profiles of DEN-treated groups. Within groups, a little variance was found between individuals. Student's t-test on the results obtained from triplicate hybridizations was performed to identify those genes with statistically significant changes in the expression. Statistical analysis revealed that 11 genes were significantly downregulated and 28 genes were upregulated in all three animals after 2 h treatment at 20 mg/kg. The upregulated group included genes encoding Gdf15, JunD1, and Mdm2, while the genes including Sox6, Shmt2, and SIc6a6 were largely down regulated. Hierarchical clustering of gene expression also allowed the identification of functionally related clusters that encode proteins related to metabolism, and MAPK signaling pathway. Taken together, this study suggests that match with a toxicant signature can assign a putative mechanism of action to the test compound if is established a database containing response patterns to various toxic compounds.

Identification of Genes Involved in Primordial-primary Follicle Transition by Suppression Subtractive Hybridization

  • Park, Chang-Eun;Yoon, Se-Jin;Jeon, Eun-Hyun;Kim, Young-Hoon;Lee, Sook-Hwan;Lee, Kyung-Ah
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.98-98
    • /
    • 2002
  • Recruitment of primordial follicles(PMF) is crucial for female fertility. however, factors and mechanisms that regulate this process is poorly understood. The present study was conducted to obtain an inclusive view of the gene expression and to identify novel factors and their pathways of regulating PMF arrest and/or growth initiation. Ovaries from one-day neonatal(consists of oocyte and PMF) and five-day old(consists of PMF and primary follicles, PRIF) mice were collected, either total RNA or mRNA was isolated, and suppression subtractive hybridization(SSH) was used to isolate and clone genes that differentially expressed in day 1 and day 5 ovaries. Confirmation that some of these genes are differentially expressed in PMF and/or in PRIF was accomplished by using laser captured microdissection(LCM), RT-PCR. in situ hybridization(ISH) and/or immunohistochemistry(IHC). In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 different genes were identified as differentially expressed in day 1 and day 5 ovaries, respectively, while 7 genes were expressed in both stages of ovaries. Day 5-subtracted library included several genes known as markers far growing follicles, such as ZP2, MATER, and fetuin. Among the genes with assigned functions, 23.8% was associated with cell cycle/apoptosis regulation, 7.1% with cellular structure, 11.9% with metabolism, 26.2% with signal transduction, and 31.0% with gene/protein expression in day 1; while 10.6%, 17.0%, 23.5%, 25.5%, and 23.4% in day 5, respectively. Genes such as GDF-8, Lats2, Septin2, and Weel were the highly expressed genes in PMF, while HSP84, Laminin2, MATER, MTi7, PTP, and Wrn were highly expressed genes in PRIF. We have successfully discovered list of genes expressed in day 1 and day 5 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRIF. Gene expression profile from the present study would provide insight for the future study on the mechanism(s) involved in primordial-primary follicular transition. This work was Supported by Korean Health 21 RND Project, Ministry of Health and Welfare, Korea (01-PJ10-PG6-01GN13-0002).

  • PDF