• Title/Summary/Keyword: GCP method

Search Result 101, Processing Time 0.023 seconds

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.

A Method to Improve Matching Success Rate between KOMPSAT-3A Imagery and Aerial Ortho-Images (KOMPSAT-3A 영상과 항공정사영상의 영상정합 성공률 향상 방법)

  • Shin, Jung-Il;Yoon, Wan-Sang;Park, Hyeong-Jun;Oh, Kwan-Young;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.893-903
    • /
    • 2018
  • The necessity of automatic precise georeferencing is increasing with the increase applications of high-resolution satellite imagery. One of the methods for collecting ground control points (GCPs) for precise georeferencing is to use chip images obtained by extracting a subset of an image map such as an ortho-aerial image, and can be automated using an image matching technique. In this case, the importance of the image matching success rate is increased due to the limitation of the number of the chip images for the known reference points such as the unified control point. This study aims to propose a method to improve the success rate of image matching between KOMPSAT-3A images and GCP chip images from aerial ortho-images. We performed the image matching with 7 cases of band pair using KOMPSAT-3A panchromatic (PAN), multispectral (MS), pansharpened (PS) imagery and GCP chip images, then compared matching success rates. As a result, about 10-30% of success rate is increased to about 40-50% when using PS imagery by using PAN and MS imagery. Therefore, using PS imagery for image matching of KOMPSAT-3A images and aerial ortho-images would be helpful to improve the matching success rate.

A Study on the Accuracy Improvement of Control Point Surveying of Photograph Using Digital Camera (디지털 카메라를 이용한 사진기준점측량의 정확도 향상에 관한 연구)

  • Kim, Kye-Dong;Park, Joung-Hyun;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.203-211
    • /
    • 2009
  • With supply of the domestic digital camera, the relative importance of the digital camera is coming to be high gradually on aerial photogrammetry, the image of digital camera is more applied in image map or digital topographic map production. But, there are cases that do not have position information or attitude information of each photograph in digital camera results. Therefore, we wish to present additional method to get more accurate photograph control point result. In this study, One is called A method, which is the case of entering positioning information of principal point from topographic map as default values that are need to extract tie point automatically using by 56 pieces of photography that are photographed by DMC to the extent to 5 courses and 35 GCP points. The other is called B-method, which is the case of entering exterior orientation parameters that are processed by block adjustment for A-method using by 4 control points in method-1 as default values. We have analyzed about results per control points arrangement for two cases using MATCH-AT that is photograph control point measurement S/W of Germany INPHO company. As a result of analysis, accuracy of B-method was better than that of A-method, and we could get more accurate results if block adjustments are executed including self calibration. Also, it is more effective in expense side that using self calibration for photograph survey in B-method because can reduce GCP numbers.

Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio (모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교)

  • You, Seung-Kyong;Cho, Sung-Min;Kim, Ji-Yong;Shim, Min-Bo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

Extraction of Ground Control Points from TerraSAR-X Data

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.328-331
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) solely from SAR data without published maps. TerraSAR-X is now in orbit and provides valuable data that have one of the highest spatial resolutions among civilian SAR systems. In this study, a sophisticated method for GCP coordinate extraction from TerraSAR-X stripmap mode data with a 3 m resolution was tested and the quality of the extracted GCPs was evaluated. An inverse-geolocation algorithm was applied to obtain GCPs from TerraSAR-X data. SRTM 90m DEM was used as an auxiliary data set for azimuth time correction of the SAR data. Mean values of the distance errors were 0.11 m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from current civilian remote sensing systems. The extracted GCPs were used for geo-rectification of an IKONOS image, which demonstrated the applicability of the GCPs to geo-rectification of high resolution optic image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

  • PDF

The Study on The Numerical Analysis Method for Ground Improved by Cement Mixing Method (시멘트혼합처리공법이 적용된 지반의 수치해석 방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2018
  • Since the composite ground design method is easy to apply for calculation or numerical analysis, it is applied to the design of cement mixing methods. However, the comparison studies between analysis and actual results such as a trial test and construction for the cement mixing method are few because the composite ground design method was developed for the compaction pile (SCP, GCP) methods. In this study, the results of various analysis methods, such as the composite ground analysis method (1 case) and the individual pile method (3 cases), were compared with actual measurements through a two-dimensional finite element numerical analysis. In case of the surface settlements, the results of study show that the individual plate method was larger than the actual measurements, while other methods are similar. The settlements at the under ground of the improved area is overestimated in all analysis methods. When comparing numerical analysis results for the horizontal displacement, and ground reaction forces, the individual pile method in equivalent wall concept was found to be the most similar to the measurements. The composite ground method was not able to predict the behavior of stress transfer (Arching effect) and it turned out that the prediction of horizontal displacement was too large.

A Sensitivity Analysis for the Geotechnical Parameters Estimation of a Ground around a Granular Compaction Pile (쇄석다짐말뚝 주변지반의 지반정수산정을 위한 민감도 분석)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.5-15
    • /
    • 2015
  • The GCP (Granular Compaction Pile) for the improvement objective of soft ground has been frequently studied. However, these studies were the results deduced on the basis of the numerical analysis and the laboratory model tests, and there was no study method to apply the effects of the bulging failure of a flexible pile. In this study, the sensitivity of the load-settlement curves of the uniform and the tapered GCP dependant on the geotechnical parameters estimated from N value of standard penetration test (SPT) was analyzed. It was estimated reasonably that, in the very soft clay soil (N=3 or less), elastic modulus was 700~2000 kPa and Poisson's ratio was 0.40~0.48.

Accuracy Improvement of DEM Using Ground Coordinates Package (공공삼각점 위치자료를 이용한 DEM의 위치 정확도 향상)

  • Lee, Hyoseong;Oh, Jaehong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • In order to correct the provided RPC and DEM generated from the high-resolution satellite images, the acquisition of the ground control point (GCP) must be preceded. This task is a very complicate that requires field surveys, GPS surveying, and image coordinate reading corresponding to GCPs. In addition, since it is difficult to set up and measure a GCP in areas where access is difficult or impossible (tidal flats, polar regions, volcanic regions, etc.), an alternative method is needed. In this paper, we propose a 3D surface matching technique using only the established ground coordinate package, avoiding the ground-image-location survey of the GCP to correct the DEM produced from WorldView-2 satellite images and the provided RPCs. The location data of the public control points were obtained from the National Geographic Information Institute website, and the DEM was corrected by performing 3D surface matching with this package. The accuracy of 3-axis translation and rotation obtained by the matching was evaluated using pre-measured GPS checkpoints. As a result, it was possible to obtain results within 2 m in the plane location and 1 m in height.

Wavelet based Area Matching of Satellite Imagery

  • Park, J.H.;Park, J.H.;Kim, K.O.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.423-425
    • /
    • 2003
  • In this paper, we propose a new scheme for matching specified areas in a satellite image, which is a very efficient method because it can be effectively applied to images that have various features. These features may include different spatial resolution and brightness; sometimes they may different geometrical property. The proposed method can be applied to some application fields such as mosaicing of satellite imagery, GCP matching.

  • PDF

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.