It is necessary to select the appropriate global climate model (GCM) to take into account the impacts of climate change on integrated water management. The objective of this study was to develop the selection technique of representative GCMs for uncertainty in climate change scenario. The selection technique which set priorities of GCMs consisted of two steps. First step was evaluating original GCMs by comparing with grid-based observational data for the past period. Second step was evaluating whether the statistical downscaled data reflect characteristics for the historical period. Spatial Disaggregation Quantile Delta Mapping (SDQDM), one of the statistical downscaling methods, was used for the downscaled data. The way of evaluating was using explanatory power, the stepwise ratio of the entire GCMs by Expert Team on Climate Change Detection and Indices (ETCCDI) basis. We used 26 GCMs based on CMIP5 data. The Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios were selected for this study. The period for evaluating reproducibility of historical period was 30 years from 1976 to 2005. Precipitation, maximum temperature, and minimum temperature were used as collected climate variables. As a result, we suggested representative 13 GCMs among 26 GCMs by using the selection technique developed in this research. Furthermore, this result can be utilized as a basic data for integrated water management.
General circulation models(GCMs)은 여러 국가 기관들의 물리적 기후 모의 프로세스를 기반으로 과거 및 미래 기후변화의 영향을 정량화하기 위해 개발되었으며 현재 미래 기후변화를 예측하는데 가장 효과적인 도구이다. 그러나 GCMs에 내포된 여러 불확실성 요소 및 넓은 격자형식의 기후 데이터는 GCMs 기후 데이터를 사용한 지역적 기후 모의 시 주요 걸림돌로 인식되어지고 있다. 편의보정 방법은 GCMs을 사용한 지역적 기후 모의 시 기후 모의 성능을 향상시키기 위해 여러 연구에서 사용되어져 왔으나 다른 연구에서는 이러한 편의보정 방법의 문제점을 언급했다. 따라서 본 연구는 편의보정 방법이 GCMs 기후 모의 결과에 미치는 영향을 정량화하고 더 나아가 GCMs 기후 변수에 따른 유량 모의 결과에 미치는 영향을 분석했다. 연구대상지 과거 기간 기후 모의를 위해 coupled model intercomparison project(CMIP)6의 GCMs을 사용했으며, 미래 기후 모의를 위해 shared socioeconomic pathway(SSP) 시나리오를 사용했다. 편의보정 방법으로는 분위사상법을 사용했으며, 편의보정 전후 GCMs 기후 모의 성능평가를 위해 5개 평가 지표를 사용했다. 연구대상지 장기 유출 모의를 위해 storm water management model(SWMM)이 사용되었으며, 기후 입력 자료로는 일 단위 강수량, 최고 및 최저온도를 고려했다. 미래 기후 및 유량 모의 결과의 불확실성은 square root of error variance(SREV) 방법을 통해 정량화됐다. 결과적으로 과거 기간 GCMs 기후 및 유량 모의성능은 편의보정 전보다 편의보정 후에서 향상되었으며 특히, 강수 및 유량 모의 성능이 크게 향상되었다. 미래 기간의 경우 편의보정 후에서 기후 및 유량의 극값을 더 잘 반영함을 확인했다. 본 연구의 결과는 GCMs 기후 변수를 사용한 지역적 기후 및 유량 모의 시 편의보정 방법이 미치는 영향에 대한 구체적인 정보를 제공할 수 있다.
The main objective of this study was to assess reference evapotranspiration based on multiple GCMs (General Circulation Models) and estimation methods. In this study, 10 GCMs based on the RCP (Representative Concentration Pathway) 4.5 scenario were used to estimate reference evapotranspiration. 54 ASOS (Automated Synoptic Observing System) data were constructed by statistical downscaling techniques. The meteorological variables of precipitation, maximum temperature and minimum temperature, relative humidity, wind speed, and solar radiation were produced using GCMs. For the past and future periods, we estimated reference evapotranspiration by GCMs and analyzed the statistical characteristics and analyzed its uncertainty. Five methods (BC: Blaney-Criddle, HS: Hargreaves-Samani, MK: Makkink, MS: Matt-Shuttleworth, and PM: Penman-Monteith) were selected to analyze the uncertainty by reference evapotranspiration estimation methods. We compared the uncertainty of reference evapotranspiration method by the variable expansion and analyzed which variables greatly influence reference evapotranspiration estimation. The posterior probabilities of five methods were estimated as BC: 0.1792, HS: 0.1775, MK: 0.2361, MS: 0.2054, and PM: 0.2018. The posterior probability indicated how well reference evapotranspiration estimated with 10 GCMs for five methods reflected the estimated reference evapotranspiration using the observed data. Through this study, we analyzed the overall characteristics of reference evapotranspiration according to GCMs and reference evapotranspiration estimation methods The results of this study might be used as a basic data for preparing the standard method of reference evapotranspiration to derive the water management method under climate change.
Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.
In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.
The majority of projections of future climate come from Global Circulation Models (GCMs), which vary in the way they were modeled the climate system, and so it produces different projections about conceptualizing of the weather system. To implement climate change impact assessment, it is necessary to analyze trends of various GCMs and select appropriate GCM. In this study, climate data in 25 GCMs 41 outputs provided by Coupled Model Intercomparison Project Phase 5 (CMIP5) was downscaled at eight stations. From preliminary analysis of variations in projected temperature, precipitation and evapotranspiration, five GCM outputs were identified as candidates for the climate change impact analysis as they cover wide ranges of the variations. Also, GCM outputs are compared with trends of HadGCM3-RA, which are established by the Korean Meteorological Administration. From the results, it can contribute to select appropriate GCMs and to obtain reasonable results for the assessment of climate change.
A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.
강수량이 예년에 비해 적은 양상은 여름강수량에 대한 부족으로 기인한다. 우리나라의 경우 장마기간의 강수와 태풍으로 인해 발생하는 강수가 전체 강수량에 많은 부분을 차지하고 있기 때문에 여름강수량이 적게 나타나게 되면 가을 가뭄 및 봄 가뭄에 대한 발생 압력도 그 만큼 커지게 되는 것이 일반적이다. 기존 연구들이 단순히 강수량을 가정하거나 시나리오를 기반으로 가뭄을 전망하는데 그치고 있으나 본 연구에서는 2009년 가뭄전망을 위해서 전지구기후모형(GCMs)의 3개월 기상예측 결과를 활용하고자 한다. 즉, APEC 기후예측 센터로부터 제공 받은 3개월 GCM Multi-Model Ensemble 예측 결과를 바탕으로 가뭄상태를 평가하였다. 따라서 본 연구의 목적은 Large-scale의 기후예측 시스템과 기상관측지점의 강수 및 온도를 연결시켜 가뭄을 전망할 수 있는 시스템을 구축하는데 있다. GCM 예측 결과를 바탕으로 2009년도 매월 강수량 및 평균 온도를 추정하여 PDSI 가뭄지수 산정에 이용하였다.
Giant cavernous malformations (GCMs) occur very rarely and little has been reported about their clinical characteristics. The authors present a case of a 20-year-old woman with a GCM. She was referred due to two episodes of generalized seizure. Computed tomography and magnetic resonance image demonstrated a heterogeneous multi-cystic lesion of $7\times5\times5$ cm size in the left frontal lobe and basal ganglia, and enhancing vascular structure abutting medial portion of the mass. These fingings suggested a diagnosis of GCM accompanying venous angioma. After left frontal craniotomy, transcortical approach was done. Total removal was accomplished and the postoperative course was uneventful. GCMs do not seem differ clinically, surgically or histopathologically from small cavernous angiomas, but imaging appearance of GCMs may be variable. The clinical, radiological feature and management of GCMs are described based on pertinent literature review.
평창유역의 적설량을 모의하기 위하여 HSPF 모형을 적용하였다. 미래 적설량을 평가하기 위해 CIMIP3에서 제공하는 A1, A1B, B1의 온실가스 배출시나리오에 기반한 GCMs를 이용하였으며, HSPF 모형과 GCMs의 통계학적 오류를 최소화 하기 위해 편의보정(Bias-correction)과 시간적 분해모형(Temporal disaggregation)을 적용하였다. 모형의 검 보정 결과 모의된 유출량과 적설량의 경우 모형 효율이 높게 나타났으며, 특히 모형의 검정 후 상관계수를 분석한 결과 월별 유출량의 상관계수는 0.94로 나타났다. 월별 적설량, 또한, 상관계수가 0.91로 나타나 보정된 HSPF 모형이 평창지역에 대한 유출량과 적설량을 잘 모의하고 있는 것으로 판단된다. GCMs를 이용한 2018년 평창올림픽 경기장의 적설량을 분석한 결과 1월에는 17.62%, 2월에는 9.38%, 3월에는 7.25%의 적설량이 감소되는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.