• 제목/요약/키워드: GCM ensembles

검색결과 4건 처리시간 0.023초

Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 (Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

기후변화 영향을 고려한 포아송 클러스터 가상강우생성모형 개발 및 검증 (Development of Poisson cluster generation model considering the climate change effects)

  • 박현진;한재문;김종호;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.189-189
    • /
    • 2015
  • 본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.

  • PDF

기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의 (GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics)

  • 김정진;류재현
    • 한국수자원학회논문집
    • /
    • 제46권3호
    • /
    • pp.229-243
    • /
    • 2013
  • 평창유역의 적설량을 모의하기 위하여 HSPF 모형을 적용하였다. 미래 적설량을 평가하기 위해 CIMIP3에서 제공하는 A1, A1B, B1의 온실가스 배출시나리오에 기반한 GCMs를 이용하였으며, HSPF 모형과 GCMs의 통계학적 오류를 최소화 하기 위해 편의보정(Bias-correction)과 시간적 분해모형(Temporal disaggregation)을 적용하였다. 모형의 검 보정 결과 모의된 유출량과 적설량의 경우 모형 효율이 높게 나타났으며, 특히 모형의 검정 후 상관계수를 분석한 결과 월별 유출량의 상관계수는 0.94로 나타났다. 월별 적설량, 또한, 상관계수가 0.91로 나타나 보정된 HSPF 모형이 평창지역에 대한 유출량과 적설량을 잘 모의하고 있는 것으로 판단된다. GCMs를 이용한 2018년 평창올림픽 경기장의 적설량을 분석한 결과 1월에는 17.62%, 2월에는 9.38%, 3월에는 7.25%의 적설량이 감소되는 것으로 나타났다.

상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가 (Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5)

  • 정유란;조재필;이은정
    • 한국농림기상학회지
    • /
    • 제17권2호
    • /
    • pp.108-125
    • /
    • 2015
  • 다수의 기후요소를 지수화하고 특정지역의 기후 자원량을 분석하여, 종합 및 판단하는 과정은 특정지역의 농업기후자원의 특성을 한 눈에 알 수 있게 한다. 농업기후자원의 특징을 단순 명료하게 표현한 것을 농업기후지수라고 하는데, 이 지수는 기후자원(예, 기온, 일사, 강수)으로부터 작물의 생육과 수량 추측을 위한 가능성과 여러 가지 영농기술을 실시하는데 필요한 기초자료를 제공함으로써 농업생산성의 주요 지표가 될 수 있다. 그러나 농업기후지수는 절대적인 것이 아니기 때문에 기후변화에 따라 항상 변화할 수 있다. 최근 IPCC 제5차 평가보고서에서 온실가스 대표경로(RCP)에 따른 시나리오가 많은 연구에 이용됨에 따라서 기후정보의 역학 및 통계적 규모축소를 통한 미래기후변화전망정보의 불확실성을 고려한 연구들이 활발히 진행되고 있다. 본 연구에서는 IPCC 제5차 평가 보고서에 사용된 RCP 시나리오를 기반으로 비모수적 분위사상법을 이용한 상세화된 기후변화 전망정보를 바탕으로 한반도의 농업기후지수(예, 식물기간 및 작물기간, 생장도일, 무상기간)의 시공간적인 변화와 불확실성을 평가하였다. 동일한 과거 기간에 대하여 기후모델(GCM)으로부터 계산된 농업기후지수와 관측자료에 의해 계산된 농업기후지수를 비교한 결과, KMA-12.5km를 제외하고 사용된 8개 개별 GCM의 농업기후지수의 각각의 평균은 4대강 유역 모두에서 관측자료에 의해 계산된 값의 평균과 비교적 잘 일치하여 개별 GCM 뿐만 아니라 다중모델앙상블(MME)의 과거기후 재현성에는 문제가 없는 것으로 확인하였다. 또한 불확실성을 고려하기 위한 MME 계산에서 사용되는 GCM의 개수가 무한적으로 증가한다고 해서 오차가 줄어들지 않았다. 추가 연구가 계속 필요하지만, 본 연구에서 3-4개의 GCM을 사용하는 경우 확실하게 오차가 개선되기 시작하였으며, 대체로 7-8개 이후부터는 더 이상 오차가 개선되지 않았다. 미래전망 결과에서, 4대강 유역 전체에 대하여 inmcm4가 과거 기간의 MME에 대한 RCP 4.5에서 1% 증가, RCP 8.5에서 2% 증가로 9개 개별 GCM 중에서 가장 낮았고, CanESM이 과거 기간의 MME에 대하여 RCP 4.5에서 10%, RCP 8.5에서 15% 증가로 가장 높은 증가를 보였다. 4대강 유역의 시공간분포의 변화에서 관측자료와 다른 경향을 보이는 개별 GCM이 있어서 지형 특성과 개별 GCM의 일변동 특성을 반영할 수 있는 상세화 방법의 개선 및 개발이 필요하다. 도출 및 평가된 본 연구의 농업기후지수는 농업용 상세 전자기후도와의 활용뿐만 아니라, 후속 연구를 위한 농업이상기후지수 및 생산성지수의 평가에 활용될 수 있을 것이다. 예를 들면, 낙동강 유역과 영산-섬진강 유역의 무상기간 증가로부터 '겨울기간이 짧아질 수 있다'라고 가정할 경우, 농업이상 기후지수(예, 저온발생빈도) 분석을 통해 겨울작물의 생산성지수의 불확실성 증감 혹은 재배시스템(예, 이모작 혹은 이기작 등)의 변화에 대한 불확실성 증감 등에 대한 평가에 활용될 수 있을 것이다.