• Title/Summary/Keyword: GC-FID analysis

Search Result 148, Processing Time 0.02 seconds

Comparative Analysis between Direct-reading Meter of PID and GC-FID using the Active Type Air Sampler for VOCs Measurement (직독식 측정기 PID와 능동식 시료채취기에 의한 GC-FID 정량분석법의 VOCs 농도 비교 연구)

  • Yeo, Jin-Hee;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • Objectives: Direct-reading instrument(Photoionization detectors, PID) and quantitative analysis using active type air sampling (Gas chromatography-flame ionization detector, GC-FID) were tested to evaluate their ability to detect volatile organic compounds(VOCs) in a semiconductor manufacturing plant. Methods: The organic compounds used were acetone and ethanol which are normally used as cleaning solutions in the semiconductor manufacturing. The evaluation was based on the preparation of test solutions of known acetone and ethanol concentration in a chamber($600{\times}600{\times}1150mm$). Samples were prepared that would be equivalent to 5~100 ppm for acetone and 10~ 200 ppm ethanol. GC-FID and PID were evaluated simultaneously. Quantitative analysis was performed after sampling and the direct-reading instrument was checked using real-time data logging. Results: Positive correlations between PID and GC-FID were found for acetone and ethanol at 0.04~2.4% for acetone(TLV: 500 ppm) and 0.1~8.3% for ethanol(TLV: 1000 ppm). When the sampling time was 15 min, concentration of test solution was the most similar between measurement methods. However, the longer the sampling time, the less similar the results. PID and GC-FID had similar exposure patterns. Conclusions: The results indicate that PID and GC-FID have similar exposure pattern and positive correlation for detection of acetone and ethanol. Therefore, PID can be used for exposure monitoring for VOCs in the semiconductor manufacturing industry. This study has significance in that it validates measuring occupational exposure using a portable device.

Development of Analytical Technology Using the HS-SPME-GC/FID for Monitoring Aromatic Solvents in Urine

  • Lee, Mi-Young;Chung, Yun Kyung;Shin, Kyong-Sok
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.18-20
    • /
    • 2013
  • Headspace solid phase micro-extraction gas chromatography/flame ionization detection (HS-SPME-GC/FID) method was compared with headspace gas chromatography/mass selective detection (HS-GC/MS). Organic solvent-spiked urine as well as urine samples from workspace was analyzed under optimal condition of each method. Detection limit of each compound by HS-SPME-GC/FID was $3.4-9.5{\mu}g/L$, which enabled trace analysis of organic solvents in urine. Linear range of each organic solvent was $10-400{\mu}g/L$, with fair correlation coefficient between 0.992 and 0.999. The detection sensitivity was 4 times better than HS-GC/MS in selected ion monitoring (SIM) mode. Accuracy and precision was confirmed using commercial reference material, with accuracy around 90% and precision less than 4.6% of coefficient of variance. Among 48 urine samples from workplace, toluene was detected from 45 samples in the range of $20-324{\mu}g/L$, but no other solvents were found. As a method for trace analysis, SPME HS GC/FID showed high sensitivity for biological monitoring of organic solvent in urine.

Quantitative and Classification Analyses of Lupenone and ${\beta}$-Sitosterol by GC-FID in Adenophora triphylla var. japonica Hara and Codonopsis lanceolata

  • Kim, Won Il;Zhao, Bing Tian;Lee, Je Hyun;Lee, Dong-Ung;Kim, Young Shik;Min, Byung Sun;Son, Jong Keun;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • A simple GC method with a FID detector was developed in order to determine two main compounds (${\beta}$-sitosterol and lupenone) for Adenophorae Radix. ${\beta}$-Sitosterol and lupenone were analyzed by the gradient thermal ramping method. Nitrogen was used as the carrier gas at 108 kPa. The flow rate of gas was 2.0 mL/min; $2{\mu}L$ of filtered sample was injected at a split ratio of 1 : 80. This method was fully validated with respect to linearity, precision, accuracy and robustness. Further, this GC-FID method was applied successfully in order to quantify two compounds in an Adenophorae Radix extract. The GC analytical method for classification analysis was performed by repeated analysis of 59 reference samples in order to differentiate between Adenophora triphylla var. japonica Hara and 14 Codonopsis lanceolata. The results indicate that the GC-FID method is suitable and reliable for the quality evaluation of Adenophorae Radix.

A Study on Evaluation of Accuracy and Precision on B, T, X Analysis Using Thermal Desorption/Gas Chromatograph/Flams Ionization Detector (열탈착/GC/FID를 이용한 B, T, X 분석의 정확도 및 정밀도 평가)

  • 박정근;유기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.265-275
    • /
    • 2000
  • By using thermal desorption/gas chromatograph/flame ionization detector(TD/GC/FID), this study was carried out to evalute an accuracy and a precision on Benzene(B), Toluene(T), o-Xylene(X) analysis in an industrial hygiene laboratory. Limits of detection of TD/GC/FID on B, T, X were showed 13.75ng/sample or less. For the accuracy of the method by concentration levels, overall bias was showed 7.7% as an absolute value, and the pooled coefficient of variation showed 3.51%. For the precision on repeatability of peak area and retention time between within-run and between-run of analytical system, it is showed the results of within-run gave better than those of between-run. Also the accuracy by sorbents(Tenax TA and Chromosorb 106)was evaluated, and the precision on reproducibility between MDHS72 and this study was compared. It is showed it is possible for TD/GC/FID to evaluate accurately B, T, X concentration levels of less than 1ppm at indoor or outdoor of workplaces in Korea.

  • PDF

The Optimal Analytical Method for the Determination of PCE and TCE by GC/FID with SPME technieque (고체상미량분석법(SPME)을 이용한 GC/FID에서 PCE 및 TCE 최적 분석법)

  • Ahn Sang-Woo;Lee Si-Jin;Chang Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.903-909
    • /
    • 2004
  • A new method based on solid phase microextraction(SPME), coupled with GC/FID, has been developed for the determination of PCE and TCE in water samples. The experimental parameters affecting the SPME process (i.e, kinds of fibers, extraction time, desorption time, extraction temperature, volume ratio of sample to headspace, salt addition, and magnetic stirring) were optimized. The coefficients of determination ($R^2$) for PCE and TCE were 0.9951 and 0.9831, respectively when analytes concentration ranges from 10 to 300$\mu$g/L. The relative standard deviations were 3.4 and $2.1\%$ for concentration of 10$\mu$g/L(n=5), respectively. The detection limits of PCE and TCE were 0.5 and l.3$\mu$g/L, respectively.

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

Determination of Volatile Organic Compounds emitted from Municipal Solid Waste Landfill Site by Thermal Desorption-Cryofocusing-GC/FID/FPD (열탈착-저온농축-GC/FID/FPD에 의한 도시 생활폐기물 매립장에서 방출되는 휘발성 유기화합물의 측정에 관한 연구)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Nam, Sung-Hyun;Kwon, Young-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.274-285
    • /
    • 2001
  • In this study, the thermal desorption-cryofocusing-gas chromatographic(TD-C-GC) method was developed for determination of volatile organic compounds(VOCs) in ambient air and was applied at the municipal solid waste landfill sites. On-column cryofocusing was possible only with a 100 ml dewars bottle in TD-C-GC method with a stainless steel column. However, high operating pressure was needed for purging VOCs from the absorbent trap, which was able to solve by pressure programming with a electric pressure controller. By using both pressure and temperature programming brought increasing of resolution power in on-column cryofocusing method, but the high pressure caused a leakage of sample tube with repeated use. A loop cryofocusing devise was also developed and compared with the direct on-column method. In loop cryofocusing method, VOCs were concentrated on a 0.8mm i.d. loop which is located between the injector and separation column by using liquid nitrogen. In order to purge VOCs from the absorbent trap, only 0.4 psi of pressure was need in the loop cryofocusing method. Dual detection system was applied for the analysis of VOCs; a FID was used for hydrocarbons and a FPD was used for sulfur-containing compounds. Qualitative analysis was done by on-column cryofocusing GC-MS system. Among the large number of VOCs, toluene was the most abundant. Hydrogen sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide and methyl propyl disulfide were detected at landfill site by FPD.

  • PDF

Optimization Study of Trace Analysis of Potential Diesel Oxygenate Using the Design Of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 디젤첨가제 미량분석의 최적화 연구)

  • Park, Jae-Sang;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.73-85
    • /
    • 2007
  • In this study, the experiment of solid-phase microextraction (SPME) technique using GC/FID was conducted as a possible alternative to liquid-liquid extraction for the analysis of EGBE, DGBE, DBM and TGME in water, and also, an optimization condition of trace analysis for disel oxygenates including EGBE by the design of experiment (DOE) was described. Experiments used a fractional factorial design method followed by central composite design allowing optimization of a number of factors as well as statistical analysis of the results. The response surface analysis showed that the extraction efficiency could be represented by a second-order polynomial equation in which the salts concentration, extraction temperature, extraction time and sonication time are the major influences. Using DOE method, a new datadependent method was developed to improve the quantity of confidently analyzed disel oxygenates in water samples.

Optimization Condition of Trace Analysis of Fuel Oxygenated Compounds Using The Design of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 연료첨가제 미량분석의 최적조건)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • In this study, Solid-phase micro-extraction (SPME) with Gas Chromatograph using Flame Ionization Detector (GC/FID) was studied as a possible alternative to liquid-liquid extraction for the analysis of Methyl tert-butyl ether (MTBE) and Tertiary-butyl ether (TBA) in water and an optimization condition of trace analysis of MTBE and TBA using the design of experiment (DOE) was described. The aim of our research was to apply experimental design methodology in the optimization condition of trace analysis of fuel oxygenated compounds in soil-phase microextraction with GC/FID. The reactions of SPME were mathematically described as a function of parameters of Temp ($X_1$), Volume ($X_2$), Time ($X_3$) and Salt ($X_4$) being modeled by the use of the partial factorial designs, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The model predicted agreed with the experimentally observed result ($Y_1$(MTBE, $R^2$ = 0.96, $Y_2$ (TBA, $R^2$ = 0.98)). The estimated ridge of the expected maximum responses and optimal conditions for MTBE and TBA were 278.13 and (Temp ($X_1$) = $48.40^{\circ}C$, Volume ($X_2$) = 73.04 mL, Time ($X_3$) = 11.51 min and Salt ($X_4$) = 12,50 mg/L), and 127.89 and (Temp ($X_1$) = $52.12^{\circ}C$, Volume ($X_2$) = 88.88mL, Time ($X_3$) = 65.40 min and Salt ($X_4$) = 12,50 mg/L), respectively.