• Title/Summary/Keyword: GC-FID

Search Result 257, Processing Time 0.023 seconds

Optimization Condition of Trace Analysis of Fuel Oxygenated Compounds Using The Design of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 연료첨가제 미량분석의 최적조건)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • In this study, Solid-phase micro-extraction (SPME) with Gas Chromatograph using Flame Ionization Detector (GC/FID) was studied as a possible alternative to liquid-liquid extraction for the analysis of Methyl tert-butyl ether (MTBE) and Tertiary-butyl ether (TBA) in water and an optimization condition of trace analysis of MTBE and TBA using the design of experiment (DOE) was described. The aim of our research was to apply experimental design methodology in the optimization condition of trace analysis of fuel oxygenated compounds in soil-phase microextraction with GC/FID. The reactions of SPME were mathematically described as a function of parameters of Temp ($X_1$), Volume ($X_2$), Time ($X_3$) and Salt ($X_4$) being modeled by the use of the partial factorial designs, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The model predicted agreed with the experimentally observed result ($Y_1$(MTBE, $R^2$ = 0.96, $Y_2$ (TBA, $R^2$ = 0.98)). The estimated ridge of the expected maximum responses and optimal conditions for MTBE and TBA were 278.13 and (Temp ($X_1$) = $48.40^{\circ}C$, Volume ($X_2$) = 73.04 mL, Time ($X_3$) = 11.51 min and Salt ($X_4$) = 12,50 mg/L), and 127.89 and (Temp ($X_1$) = $52.12^{\circ}C$, Volume ($X_2$) = 88.88mL, Time ($X_3$) = 65.40 min and Salt ($X_4$) = 12,50 mg/L), respectively.

Optimization Study of Trace Analysis of Potential Diesel Oxygenate Using the Design Of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 디젤첨가제 미량분석의 최적화 연구)

  • Park, Jae-Sang;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.73-85
    • /
    • 2007
  • In this study, the experiment of solid-phase microextraction (SPME) technique using GC/FID was conducted as a possible alternative to liquid-liquid extraction for the analysis of EGBE, DGBE, DBM and TGME in water, and also, an optimization condition of trace analysis for disel oxygenates including EGBE by the design of experiment (DOE) was described. Experiments used a fractional factorial design method followed by central composite design allowing optimization of a number of factors as well as statistical analysis of the results. The response surface analysis showed that the extraction efficiency could be represented by a second-order polynomial equation in which the salts concentration, extraction temperature, extraction time and sonication time are the major influences. Using DOE method, a new datadependent method was developed to improve the quantity of confidently analyzed disel oxygenates in water samples.

Purity Assessment of Organic Reference Materials with a Mass Balance Method: A Case Study of Endosulfan-II

  • Kim, Seung-Hyun;Lee, Joonhee;Ahn, Seonghee;Song, Young-Sin;Kim, Dong-Kyum;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.531-538
    • /
    • 2013
  • A mass balance method established in this laboratory was applied to determine the purity of an endosulfan-II pure substance. Gas chromatography-flame ionization detector (GC-FID) was used to measure organic impurities. Total of 10 structurally related organic impurities were detected by GC-FID in the material. Water content was determined to be 0.187% by Karl-Fischer (K-F) coulometry with an oven-drying method. Non-volatile residual impurities was not detected by Thermal gravimetric analysis (TGA) within the detection limit of 0.04% (0.7 ${\mu}g$ in absolute amount). Residual solvents within the substance were determined to be 0.007% in the Endosulfan-II pure substance by running GC-FID after dissolving it with two solvents. The purity of the endosulfan-II was finally assigned to be ($99.17{\pm}0.14$)%. Details of the mass balance method including interpretation and evaluating uncertainties of results from each individual methods and the finally assayed purity were also described.

Characteristics of trace analysis of potential diesel oxygenates using the factorial design in solid-phase microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 요인배치법을 이용한 디젤첨가제의 미량분석의 특성 평가)

  • Park, Jae-Sang;Chang, Soon-Woong
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.370-382
    • /
    • 2007
  • In this study, solid-phase microextraction (SPME) technique using GC/FID was studied as a possible alternative to liquid-liquid extraction for the analysis of EGBE, DGBE, DBM and TGME in water, and an optimization condition of trace analysis of EGBE, DGBE, DBM and TGME using the factorial design was described. Experiments used a fractional factorial design method followed by central composite design allowing optimization of a number of factors as well as statical analysis of results. The response surface analysis showed that the extraction efficiency can be described by a second-order polynomial equation in which the salts concentration, extraction temperature, extraction time and sonication time are the major influences. Using DOE, a new data-dependent method was developed that improved the quantity of confidently analyzed EGBE, DGBE, DBM and TGME in water samples.

The Determination of Ethyl Isocyanate and Propyl Isocyanate by GC/FID (에틸 이소시아네이트와 프로필 이소시아네이트의 GC/FID 분석)

  • Lee, Eun-Jung;Yoo, Chul;Choi, Hong-Soon;Park, Jun-Ho;Yoon, Ju-Song;Cho, Young-Bong
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.1_2
    • /
    • pp.53-59
    • /
    • 2000
  • The purpose of this study is the development of the simple and precise determination method of ethyl isocyanate (EIC) and propyl isocyanate (PIC) through derivatization using secondary aliphatic amines by gas chromatography with flame ionization detector. The urea derivatives are quantitatively and simultaneously derived from EIC and PIC with secondary aliphatic amines such as dipropylamine, dibutylamine. and dipentylamine in methylene chloride, and confirmed by thin layer chromatography and gas chromatography with mass selective detector. For GC/FID, according to the increasing carbon atom of the amines, the retention time and peak area of the urea derivatives are increased. The instrumental detection limits for EIC and PIC were about 23.3∼34.8 $\mu\textrm{g}$ and 21.6∼28.9 $\mu\textrm{g}$, respectively.

  • PDF

Sampling and Analytical Method for Linear Carbonates using GC/FID (GC/FID를 이용한 사슬형 카보네이트 3종의 측정·분석방법)

  • Miyeon Jang;Gwangyong Yi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.455-463
    • /
    • 2023
  • Objectives: The aim of this study was to develop an air sampling and analytical method for estimating worker exposure to linear carbonate solvents and to evaluate the method. Methods: The target substances were three linear carbonates: DMC, DEC, EMC. GC/FID was used for sample analysis. Laboratory experiments were conducted to determine desorption solvents and sample capacity, and to evaluate storage stability, accuracy, and precision. Results: Coconut Shell Charcoal (CSC, 100/50 mg) was used as the air sampling media, and a desorption solvent of 5% methanol/95% dichloromethane was selected. Recommended sampling capacities were 1~11 ℓ for DMC, 1~18 ℓ for DEC, and 1~24 ℓ for EMC. The stability of three linear carbonates was demonstrated over 30 days in a refrigerator (4℃). Detection limits were determined as follows: DMC 0.26 ㎍/sample, DEC 0.24 ㎍/sample, and EMC 0.25 ㎍/sample. The total coefficient of variation was calculated as DMC 0.064, DEC 0.079, and EMC 0.07. Conclusions: This sampling and analysis method is suitable for estimating personal exposure to linear carbonates in the workplace.

Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis (흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

Competitive Extraction of Chlorinated Solvents by Headspace SPME GC/FID (Headspace SPME GC/FID를 이용한 Chlorinated Solvents의 경쟁적 추출효과에 관한 연구)

  • An, Sangwoo;Kim, Youngju;Chun, Sukyoung;Lee, Sijin;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.61-67
    • /
    • 2010
  • In this study, Solid-phase microextraction (SPME) with GC/FID was studied as a possible alternative to liquid-liquid extraction for the analysis of chlorinated solvents (PCE and TCE) and these by-products (cis-DCE, VC, and Ethylene). Experimental parameters affecting the SPME process (such as kind of fibers, adsorption time, desorption time, volume ratio of sample to headspace, salt addition, and magnetic stirring) were optimized. Experimental parameters such as CAR/PDMS, adsorption time of 20 min, desorption time of 5 min at $250^{\circ}C$, headspace volume of 50mL, sodium chloride (NaCl) concentration of 25% combined with magnetic stirring were selected in optimal experimental conditions for analysis of chlorinated solvents and these by-products. The general affinity of analytes to CAR/PDMS fiber was high in the order PCE>TCE>cis-DCE>VC>Ethylene. The linearity of $R^2$ for chlorinated solvents and these by-products was from 0.912 to 0.999 when analyte concentrations range from $10{\mu}g/L$ to $500{\mu}g/L$, respectively. The relative standard deviation (% RSD) were from 2.1% to 3.6% for concentration of $500{\mu}g/L$ (n=5), respectively. Finally, the limited of detection (LOD) observed in our study for chlorinated solvents and these by-products were from $0.5{\mu}g/L$ to $10{\mu}g/L$, respectively.

Comparison of Sampling and Analysis Methods for Volatile Organic Compounds in Ambient Air (대기중 휘발성 유기화합물의 채취 및 분석 방법 비교)

  • 나광삼;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.507-518
    • /
    • 1998
  • A field comparison study was carried out to quantify differences among various sampling and analytical methods for volatile organic compounds (VOCs) at a site in Vlsan in June 1997. Air sampling containers (SUMMA canisters) were used by the Korea Institute of Science and Technology (KIST) and adsorption tubes (carbotrap) were used by Yeungnam University (YN Univ.) for sampling ambient air. Duplicate samples obtained by KIST were analyzed by KIST with a GC-MS system for aromatics and halogenated hydrocarbons and by Atm AA with a GC -FID system for C2∼C9 hydrocarbons, respectively. The adsorption tube samples were analyzed by YN Univ. with a GC-FID system for aromatics. VOC levels for the duplicate canister sampls analyzed by KIST and Atm AA were in good agreement. Concentrations of aromatics by the adsroption tube method were generally higher than those by the canister sampling method by factor of 1.5 to 2.0. Differences between the two sampling methods were discussed.

  • PDF

Determination of Methamphetamine and its Metabolite Amphetamine in Biological Fluids from 11 Fatal Gases

  • Yoo, Young-Chan;Chung, Hee-Sun;Choi, Hwa-Kyung
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.175-179
    • /
    • 1993
  • Gas chromoatography with flame ionization detector (FID) along with mass spectrometry (GC/MS) were used for the screening and quantification of methamphetamine (MA) and its major metabolite, amphetamine (AM0, in blood and urine in eleven fatal cases in which MA abuse was suspected. Postmortem blood MA varied from $0.5-30.2\;\mu{g/ml}$, while Am levels ranged from none detected (6 of 11 cases) to 4.8 .mu.g/ml. Additionally, distribution studies were performed in three of these cases in which tissue smaples were available for evaluation. Liver contained the highest ocncentration of MA among the tissu samples. In eight of the eleven cases, when no other direct cause of death was evident (i.e. 3 cases of traumatic dath0, either no blood AM was found or the ratio of MA/AM was 3.4 or greater. These data are consistent with acute MA use followed by death due to acute drug intoxication or by the occurrence of hypersensitivity and reverse seen in cases of chronic drug abuse.

  • PDF