• Title/Summary/Keyword: GC/TCD

Search Result 21, Processing Time 0.026 seconds

Adsorption Characteristics of Functionalized Activated Carbon for High Temperature CO2 Capture (고온 이산화탄소 포집을 위한 기능성 활성탄의 흡착특성)

  • Choi, Sung-Woo;Lee, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Activated carbon impregnated with polyethyleneimine (PEI) was evaluated as a functionalized adsorbent for $CO_2$ capture. The $CO_2$ adsorption characteristics of the adsorbents was undertaken using GC/TCD, BET surface area and FT-IR. A series of adsorbents were synthesized by impregnating 10, 30, 50 wt% of PEI on activated carbons and were investigated $CO_2$ adsorption capacity at high and low adsorption temperature. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $100^{\circ}C$ was as follow: AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC at $20^{\circ}C$ and PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC at $100^{\circ}C$. Adsorption capacities of amine functionalized AC was lager than virgin AC at high temperature due to chemisorption by amino-group content. From the results, the PEI(10)-AC showed one of the most promising adsorbents for $CO_2$ capture from flue gas at high temperature.

Characteristics of $CO_2$ Adsorption by MEA Impregnated MCM-41 (MEA가 힘침된 MCM-41 흡착제의 $CO_2$ 흡착 특성)

  • Lee, Jung-Beom;Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.686-691
    • /
    • 2011
  • The $CO_2$ adsorption and characteristics of mesoporous silica MCM-41 impregnated by MEA (Monoethanolamine) were examined in this study. The adsorbents were characterized by XRD (X-ray powder diffraction), FT-IR (Fourier transform infrared spectroscopy), $N_2$ adsorption-desorption isotherms. $CO_2$ adsorption measurements were carried out using a GC-TCD unit using 15% $CO_2$ gas. The $CO_2$ adsorption capacity of MCM-41 increased by MEA contents to 10~40 wt%, otherwise MEA content of 50 wt% was decreased $CO_2$ adsorption capacity. The amines tended to deform at MCM-41 surface if too many amines were provided. Therefore $CO_2$ adsorption capacity can be decreased. The results of this study suggest it is important to control content of MEA in MCM-41 for adsorption of $CO_2$.

Case on the Death of Scuba Diver by Analyzing the Air in Nitrox Cylinder (Nitrox 공기통의 기체 분석에 의한 스쿠버다이버 사망원인 추정에 관한 사례연구)

  • Lee, Joon-Bae;You, Jae-Hoon;Shon, Shung-Kun;Sung, Tae-Myung;Paeng, Ki-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • Going underwater is supposed to begin with the history of human beings. At first it was confined to relatively shallow level, less than several meters by holding breath. Recently, deep level diving has been necessary for such purpose as construction, maritime salvage, military operations, research and sports by using SCUBA(self-contained underwater breathing apparatus) equipment. As one goes down into water, the pressure on the diver is increased due to water pressure with depth, usually 1 atm for each 10 m water level. In deep water, mixed gas or nitrox(EAN, enriched air nitrox) could be applied for the divers lest they should get disease due to high pressure. Of these, the former is usually composed of oxygen and inert gas like helium or hydrogen, the latter contains higher oxygen content than that in normal air in which the oxygen concentration is designated by the character "EAN" followed by vol. % of oxygen, for example, "EAN 40" contains 40% of oxygen. In this case, a victim was found at the 39 m below the sea surface breathing air and nitrox in cylinder wrongly marked as EAN 36, which was analyzed to contain 63% of oxygen by GC/TCD. The cause of death could not be exactly related with the oxygen content in the nitrox cylinder, because the accurate depth for the victim to dive was not known, even though the victim was just found at the depth of 39 m. However, the wrongly marked nitrox could be believed to be the main cause of the death at the depth unless there happened any other accident except that during diving.

Development and Characteristic Study of a Portable Gas Chromatography (소형 GC 모듈의 개발 및 특성)

  • Lee, Myeong-Gi;Oh, Jun-Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • In the present study, we developed a portable GC module for real-time, quantitative determinations of gas mixtures in air sample. Capillary or packed column was coiled together with a heater wire and thermocouple in a small case. Together with the small and light weight sensors and valves as well as the rechargeable carrier gas canister, which permits collection and separation of samples, this system can determine the components of complex mixtures of air contaminants at low concentrations with a duty cycle of 10 min. When measured the various samples with a FID and TCD, the system showed, for a capillary column, a good resolution (R=8.3), high sensitivity, reproducibility, and linear dynamic range greater than three orders of magnitude. These results indicate that the portable GC module is expected to be used for a wide range of applications, particularly for in situ environmental monitoring, chemical processes, and regulation of contaminant emission.

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

Water Splitting Capacity Improvement of Mn-Fe Oxide Prepared by Ball Milling with $ZrO_2$

  • Kang, Kyoung-Soo;Cho, Mi-Sun;Kim, Chang-Hee;Park, Chu-Sik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1122-1123
    • /
    • 2006
  • Mn-Fe oxide and Mn-Fe oxide/$ZrO_2$(50wt%/50wt%) were prepared by ball milling method. XRD data of the prepared samples revealed that hematite and ferrite phase coexisted. Water splitting at 1273K, after thermal reduction at 1573K, was performed 4 times for the samples. Hydrogen production amount was analyzed by GC with TCD detector. Water splitting capacity of Mn-Fe oxide was improved by ball milling with $ZrO_2$.

  • PDF

Installation and Test Run of Comprehensive Analysis System for SF6 in Power Equipment

  • Lee, Jeong Eun;Kim, Kwang Sin;Kim, Ah Reum;Park, Seoksoon;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • After $SF_6$, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used $SF_6$ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing $SF_6$ recovery and refinement technology starting with establishing a comprehensive $SF_6$ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of $SF_6$ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of $SF_6$ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and $SO_2$, and moisture analyzer for analysis of moisture below 100 ppm. With this analysis system, complete analysis method of $SF_6$ has been established. This analysis system is being used in the maintenance of power equipment and the development of $SF_6$ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase $SF_6$ samples from a $SF_6$ refinement system before and after refinement are presented.

Influence of Reaction Temperature on Bio-oil Production from Rice Straw by the Pyrolysis (볏짚으로부터 바이오오일 생산에 대한 열분해 반응온도의 영향)

  • Kang Bo-Sung;Park Young-Kwon;Kim Joo-Sik
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.12-19
    • /
    • 2006
  • Rice straw is one or the main renewable energy sources in Korea. Bio-oil is produced from rice straw with a lab-scale equipment mainly with a fluidized bed and a char removal system. It was investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiments were conducted at $466^{\circ}C,\;504^{\circ}C\;and\;579^{\circ}C$, respectively. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. Tn the experiments, we observed that the production of bio-oil was decreased with temperature, and the bio-oil contained very useful chemicals.

Influence of Reaction Temperature on the Pyrolytic Product of Rice Straw by Fast Pyrolysis using a Fluidized Bed (볏짚의 급속 열분해 생성물에 대한 반응온도의 영향)

  • Kang, Bo-Sung;Park, Young-Kwon;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.47-58
    • /
    • 2005
  • Rice straw is one of the main renewable energy sources in Korea, and bio-oil is produced from rice straw with a lab. scale plant equipped mainly with a fluidized bed and a char removal system. We investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiment were conducted between $450^{\circ}C\;and\;600^{\circ}C$ with a feed rate of about 300g/h. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. In the experiments, we observed that the optimum reaction temperature range for the production of bio-oil is between $450^{\circ}C\;and\;500^{\circ}C$.

  • PDF