• 제목/요약/키워드: GATA2

검색결과 113건 처리시간 0.028초

심장과 뇌 발달에서 GATA6 유전자 발현 감소가 미치는 영향 (The Effects of the Expression of GATA Binding Protein 6 on Heart and Brain Development)

  • 서정원
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1230-1234
    • /
    • 2015
  • GATA binding protein 6 (GATA6)는 초기 배반포 단계에서 발현이 시작되어, 심장, 췌장, 장 등의 분화와 발달에 중요한 유전자 발현을 조절하는 전사인자이다. 본 연구에서는 GATA6의 세포 분화와 개체 발달 과정에서의 역할을 마우스 배아줄기세포와 zebrafish를 이용하여 확인하였다. 먼저, 마우스 배아줄기세포를 박동하는 pacemaker 심근세포로 분화 유도하였다. RT-PCR을 실시하여 심근세포 분화 과정에서 GATA6 유전자 발현 변화를 확인한 결과, Gata6의 발현이 분화 4일째부터 증가함을 확인하였다. GATA6 유전자의 발현 증가는 심장 발달에 필수적인 전사인자인 NK2 homeobox 5 (Nkx2.5)나 myocyte enhancer factor 2C (MEF2C)의 발현 증가에 앞서 나타났다. GATA6 유전자가 발달 과정에 미치는 영향을 확인하기 위하여 GATA6의 morpholino를 zebrafish 배아에 microinjection하여 발생 변화를 관찰하였다. GATA6의 발현을 knockdown시킨 zebrafish의 심장은 크기가 감소하였고, 심박동률 또한 감소하였다. 한편, 뇌에서는 전체적인 뇌 퇴행이 관찰되었는데, acridine orange로 염색 한 결과, 뇌 전체에서의 세포사멸의 증가를 나타내었다. 흥미롭게도, GATA6의 발현 감소는 초기 bud 단계에서는 오히려 세포사멸을 감소시켰다. 본 연구는 심장과 뇌 발달에서의 GATA6 유전자의 중요성을 시사한다.

A Minor Transactivation Effect of GATA-3 on its Target Sites in the Extrachromosomal Status

  • Lee, Gap-Ryol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.2056-2060
    • /
    • 2007
  • Transcription factor GATA-3 is the critical transcription factor for Th2 cell differentiation. In spite of its importance in Th2 cell differentiation, the molecular mechanism for its action in Th2 differentiation is poorly understood. Previous studies have suggested that GATA-3 may be involved in the chromatin remodeling in the Th2 cytokine locus. To determine whether GATA-3 exerts its effect on its target sites in the extrachromosomal status, cell transfection assay was performed. In this assay, 800 bp IL4 promoter-luciferase constructs linked with GATA-3 target sites were transfected into the M12 B cell line, D10 mouse Th2 cell lines, and human T lymphoma Jurkat cell lines with or without the GATA-3 expression vector. The GATA-3 effects on its target sites were minimal in the extrachromosomal status, supporting the previous propositions that GATA-3 functions at the chromatin level by remodeling chromatin structure.

Identification of GATA2 and AP-1 Activator Elements within the Enhancer VNTR Occurring in Intron 5 of the Human SIRT3 Gene

  • Bellizzi, Dina;Covello, Giuseppina;Di Cianni, Fausta;Tong, Qiang;De Benedictis, Giovanna
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.87-92
    • /
    • 2009
  • Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study were: 1) to verify if GATA and AP-1 sites could bind GATA2 and c-Jun/c-Fos factors, respectively; 2) to investigate whether such sites modulate the enhancer activity of the SIRT3-VNTR alleles. DAPA assay proved that GATA2 and c-Jun/c-Fos factors are able to bind the corresponding sites. Moreover, co-transfection experiments showed that the over-expression of GATA2 and c-Jun/c-Fos factors boosts the VNTR enhancer activity in an allelic-specific way. Furthermore, we established that GATA2 and c-Jun/c-Fos act additively in modulating the SIRT3-VNTR enhancer function. Therefore, GATA2 and AP-1 are functional sites and the T > C transition of the second VNTR repeat affects their activity.

GATA4 negatively regulates bone sialoprotein expression in osteoblasts

  • Song, Insun;Jeong, Byung-chul;Choi, Yong Jun;Chung, Yoon-Sok;Kim, Nacksung
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.343-348
    • /
    • 2016
  • GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in osteoblastic cells. Silencing GATA4 further enhanced the Runx2- and Sox9-mediated Bsp promoter activity, whereas GATA4 overexpression down-regulated Bsp promoter activity mediated by Runx2 and Sox9. GATA4 also interacted with Runx2 and Sox9, by attenuating the binding ability of Runx2 and Sox9 to the Bsp promoter region. Our data suggest that GATA4 acts as a negative regulator of Bsp expression in osteoblasts.

GATA4 negatively regulates osteoblast differentiation by downregulation of Runx2

  • Song, Insun;Kim, Kabsun;Kim, Jung Ha;Lee, Young-Kyoung;Jung, Hyun-Jung;Byun, Hae-Ok;Yoon, Gyesoon;Kim, Nacksung
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.463-468
    • /
    • 2014
  • Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.

NDRG2 Promotes GATA-1 Expression through Regulation of the JAK2/STAT Pathway in PMA-stimulated U937 Cells

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Nam, So-Rim;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.348-357
    • /
    • 2011
  • Background: N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMAstimulated U937 cells. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. Results: NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. Conclusion: The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.

A Comparative Genome-Wide Analysis of GATA Transcription Factors in Fungi

  • Park, Jong-Sun;Kim, Hyo-Jeong;Kim, Soon-Ok;Kong, Sung-Hyung;Park, Jae-Jin;Kim, Se-Ryun;Han, Hyea-Young;Park, Bong-Soo;Jung, Kyong-Yong;Lee, Yong-Hwan
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.147-160
    • /
    • 2006
  • GATA transcription factors are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif in the form $CX_{2}CX_{17-20}CX_{2}C$followed by a basic region. In fungi, they act as transcriptional activators or repressors in several different processes, ranging from nitrogen source utilization to mating-type switching. Using an in-house bioinformatics portal system, we surveyed 50 fungal and 9 out-group genomes and identified 396 putative fungal GATA transcription factors. The proportion of GATA transcription factors within a genome varied among taxonomic lineages. Subsequent analyses of phylogenetic relationships among the fungal GATA transcription factors, as well as a study of their domain architecture and gene structure, demonstrated high degrees of conservation in type IVa and type IVb zinc finger motifs and the existence of distinctive clusters at least at the level of subphylum. The SFH1 subgroup with a 20-residue loop was newly identified, in addition to six well-defined subgroups in the subphylum Pezizomycotina. Furthermore, a novel GATA motif with a 2f-residue loop ($CX_{2}CX_{21}CX_{2}C$, designated 'zinc finger type IVc') was discovered within the phylum Basidiomycota. Our results suggest that fungal GATA factors might have undergone multiple distinct modes of evolution resulting in diversified cellular modulation in fungi.

GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis

  • Lin, Heng;Hu Peng;Zhang, Hongyu;Deng, Yong;Yang, Zhiqing;Zhang, Leida
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.329-342
    • /
    • 2022
  • The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.

Expression of Placenta-Related Genes (Cdx2 and GATA6) in Cloned Porcine Development

  • Cha, Byung-Hyun;Hwang, Seong-Soo;Lee, Hwi-Cheul;Park, Mi-Rung;Im, Gi-Sun;Woo, Jae-Seok;Park, Soo-Bong;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.195-202
    • /
    • 2009
  • Abnormal development and fetal loss during the post-implantation period are key concerns in the production of cloned animals by somatic cell nuclear transfer (SCNT). We hypothesized that the problems in cloned porcine offspring derived from SCNT are related to interactions between the conceptus and the endometrial environment. In the present study, we investigated expression patterns in the formation of placenta-related genes (Cdx2 and GATA6) in whole in vivo normal porcine embryos (from single cell to blastocyst) and each tissue of a normal fetus at Days 25, 35 and 55 by quantitative mRNA expression analysis using real-time PCR. The expression of Cdx2 and GATA6 mRNA increased to around the blastocyst stage. These genes were gradually decreased from the peri-implantation to post-implantation stage. Moreover, we examined the expression patterns of Cdx2 and GATA6 in Day 35 normal and SCNT cloned fetuses by the same methods. And, the level of Cdx2 and GATA6 gene expression in the extraembryonic tissue of SCNT was significantly higher than that of control tissues. From the present results, it can be postulated that the aberrant expression of Cdx2 and GATA6 genes in the endometrial and extraembryonic tissues at pre- and peri-implantation stages may be closely related to the lower efficiency of animal cloning.

RBL-2H3 비만세포와 OVA/alum 감작 생쥐에서 청심보혈탕(淸心補血湯)의 항알레르기 효과 (Anti-allergic Effects of Chungshimbohyeoltang in RBL-2H3 Mast Cells and OVA/alum Sensitized Mice)

  • 조민서;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제26권3호
    • /
    • pp.30-45
    • /
    • 2012
  • Objectives The suppressive effect of CSBHT has been mysterious. Thus, the present study is designed to investigate the suppressive effect and its mechanism. Methods To investigate the anti-allergy effect from ChungShimBoHyeolTang(CSBHT), RBL-2H3 cell was used and examined by Real-Time PCR, and IL-4 and IL-13 from RBL-2H3 was examined by ELIS. In addition, GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos, c-Jun, NF-${\kappa}B$ p65 transcription factors of RBL-2H3 mast cell were examined by Western Blotting. Also, OVA/alum-sensitized mice were orally administrated CSBHT and serum OVA-specific IgE production, IL-4, and IL-13 production in splenocytes supernatant were examined. Results As a result of treating with CSBHT extract, RBL-2H3 mast cells significantly suppressed the IL-4 and IL-13 mRNA expression and IL-4 and IL-13 production. Western blot analysis of transcription factors involving IL-4 and IL-13 expression also revealed a prominent decreases of mast cell's specific transcription factors including GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos, and NF-${\kappa}B$ p65. Also, examining the mice, administration of CSBHT suppressed the amount of OVA-specific IgE in OVA/alum-sensitized mice and IL-4 and IL-13 production in splenocytes supernatant. Conclusions The study suggested that the anti-allergic activities of CSBHT suppresses IL-4 and IL-13 production from the Th2 cytokines by suppressing transcription factors as GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 in mast cells.