• Title/Summary/Keyword: GARCH volatility effect

Search Result 72, Processing Time 0.022 seconds

Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model (국면전환 GARCH 모형을 이용한 코스피 변동성 분석)

  • Huh, Jinyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

A Test on the Volatility Feedback Hypothesis in the Emerging Stock Market (신흥주식시장에서의 변동성반응가설 검정)

  • Kim, Byoung-Joon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.191-234
    • /
    • 2009
  • This study examined on the volatility feedback hypothesis through the use of threshold GARCH-in-Mean (GJR-GARCH-M) model developed by Glosten, Jaganathan, and Runkle (1993) in the stock markets of 14 emerging countries during the period of January, 1996 to May, 2009. On this study, I found successful evidences which can support the volatility feedback hypothesis through the following three estimation procedures. First, I found relatively strong positive relationship between the expected market risk premiums and their conditional standard deviations from the GARCH-M model in the basis of daily return on each representative stock market index, which is appropriate to investors' risk-averse preferences. Second, I can also identify the significant asymmetric time-varying volatility originated from the investors' differentiated reactions toward the unexpected market shocks by applying the GJR-GARCH-M model and further find the lasting positive risk aversion coefficient estimators. Third, I derived the negative signs of the regression coefficient of unpredicted volatility on the stock market return by re-applying the GJR-GARCH-M model after I controlled the positive effect of predicted volatility through including the conditional standard deviations from the previous GARCH-M model estimation as an independent explanatory variable in the re-applied new GJR-GARCH-M model. With these consecutive results, the volatility feedback effect was successfully tested to be effective also in the various emerging stock markets, although the leverage hypothesis turned out to be insufficient to be applied to another source of explaining the negative relationship between the unexpected volatility and the ex-post stock market return in the emerging countries in general.

  • PDF

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

An Empirical Analysis of KOSPI Volatility Using GARCH-ARJI Model (GARCH-ARJI 모형을 할용한 KOSPI 수익률의 변동성에 관한 실증분석)

  • Kim, Woo-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • In this paper, we systematically analyzed the variation of KOSPI returns using a GARCH-ARJI(auto regressive jump intensity) model. This model is possibly to capture time varying volatility as well as time varying conditional jump intensity. Thus, we can decompose return volatility into usual variation explained by the GARCH model and unusual variation that resulted from external news or shocks. We found that the jump intensity implied on KOSPI return series clearly shows time varying. We also found that conditional volatility due to jump is generally smaller than that resulted from usual variation. We also analyzed the effect of 9.11 and the 2008 financial crisis on the volatility of KOSPI returns and conclude that there is strong and persistent impact on the KOSPI from the 2008 financial crisis.

Threshold heterogeneous autoregressive modeling for realized volatility (임계 HAR 모형을 이용한 실현 변동성 분석)

  • Sein Moon;Minsu Park;Changryong Baek
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.295-307
    • /
    • 2023
  • The heterogeneous autoregressive (HAR) model is a simple linear model that is commonly used to explain long memory in the realized volatility. However, as realized volatility has more complicated features such as conditional heteroscedasticity, leverage effect, and volatility clustering, it is necessary to extend the simple HAR model. Therefore, to better incorporate the stylized facts, we propose a threshold HAR model with GARCH errors, namely the THAR-GARCH model. That is, the THAR-GARCH model is a nonlinear model whose coefficients vary according to a threshold value, and the conditional heteroscedasticity is explained through the GARCH errors. Model parameters are estimated using an iterative weighted least squares estimation method. Our simulation study supports the consistency of the iterative estimation method. In addition, we show that the proposed THAR-GARCH model has better forecasting power by applying to the realized volatility of major 21 stock indices around the world.

Two Sample Test Procedures for Linear Rank Statistics for Garch Processes

  • Chandra S. Ajay;Vanualailai Jito;Raj Sushil D.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.557-587
    • /
    • 2005
  • This paper elucidates the limiting Gaussian distribution of a class of rank order statistics {$T_N$} for two sample problem pertaining to empirical processes of the squared residuals from two independent samples of GARCH processes. A distinctive feature is that, unlike the residuals of ARMA processes, the asymptotics of {$T_N$} depend on those of GARCH volatility estimators. Based on the asymptotics of {$T_N$}, we empirically assess the relative asymptotic efficiency and effect of the GARCH specification for some GARCH residual distributions. In contrast with the independent, identically distributed or ARMA settings, these studies illuminate some interesting features of GARCH residuals.

A Study on the Interregional Relationship of Housing Purchase Price Volatility (지역간 주택매매가격 변동성의 상관관계에 관한 연구)

  • Yoo, Han-Soo
    • Korean Business Review
    • /
    • v.20 no.2
    • /
    • pp.15-27
    • /
    • 2007
  • This paper analyzed the relationship between Housing Purchase Price volatility of Seoul and Housing Purchase Price volatility of local large city. Other studies investigates the effect on the observed volatility Observed volatility consists of fundamental volatility and transitory volatility. Fundamental volatility is caused by information arrival and transitory volatility is caused by noise trading. Fundamental volatility is trend component and is modelled as a random walk with drift. Transitory volatility is cyclical component and is modelled as a stationary process. In contrast to other studies, this study investigates the effect on the fundamental volatility and transitory volatility individually. Observed volatility is estimated by GJR GARCH(1,1) model. We find that GJH GARCH model is superior to GARCH model and good news is more remarkable effect on volatility than bad news. This study decomposes the observed volatility into fundamental volatility and transitory volatility using Kalman filtering method. The findings in this paper is as follows. The correlation between Seoul housing price volatility and Busan housing price volatility is high. But, the correlation between Seoul and Daejeon is low. And the correlation between Daejeon and Busan is low. As a distinguishing feature, the correlation between fundamental volatilities is high in the case of all pairs. But, the correlation between transitory volatilities turns out low. The reason is as follows. When economic information arrives, Seoul, Daejeon, and Busan housing markets, all together, are affected by this information.

  • PDF

A threshold-asymmetric realized volatility for high frequency financial time series (비대칭형 분계점 실현변동성의 제안 및 응용)

  • Kim, J.Y.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.205-216
    • /
    • 2018
  • This paper is concerned with volatility computations for high frequency time series. A threshold-asymmetric realized volatility (T-RV) is suggested to capture a leverage effect. The T-RV is compared with various conventional volatility computations including standard realized volatility, GARCH-type volatilities, historical volatility and exponentially weighted moving average volatility. High frequency KOSPI data are analyzed for illustration.

Estimation of BDI Volatility: Leverage GARCH Models (BDI의 변동성 추정: 레버리지 GARCH 모형을 중심으로)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2014
  • This paper aims at measuring how new information is incorporated into volatility estimates. Various GARCH models are compared and estimated with daily BDI(Baltic Dry Index) data. While most researchers agree that volatility is predictable, they differ on how this volatility predictability should be modelled. This study, hence, introduces the asymmetric or leverage volatility models, in which good news and bad news have different predictability for future. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. From the Ljung-Box test statistic for twelfth-order serial correlation for the level we do not find any significant serial correlation in the unpredictable BDI. The coefficients of skewness and kurtosis both indicate that the unpredictable BDI has a distribution which is skewed to the left and significantly flat tailed. Furthermore, the Ljung-Box test statistic for twelfth-order serial correlations in the squares strongly suggests the presence of time-varying volatility. The sign bias test, the negative size bias test, and the positive size bias test strongly indicate that large positive(negative) BDI shocks cause more volatility than small ones. This paper, also, shows that three leverage models have problems in capturing the correct impact of news on volatility and that negative shocks do not cause higher volatility than positive shocks. Specifically, the GARCH model successfully reveals the shape of the news impact curve and is a useful approach to modeling conditional heteroscedasticity of daily BDI.