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Abstract

This paper elucidates the limiting Gaussian distribution of a class of rank order
statistics {7y} for two sample problem pertaining to empirical processes of the

squared residuals from two independent samples of GARCH processes. A distinctive
feature is that, unlike the residuals of ARMA processes, the asymptotics of {7y}

depend on those of GARCH volatility estimators. Based on the asymptotics of {7y},

we empirically assess the relative asymptotic efficiency and effect of the GARCH
specification for some GARCH residual distributions. In contrast with the independent,
identically distributed or ARMA settings, these studies illuminate some interesting
features of GARCH residuals.

Keywords : GARCH process; squared residuals; empirical processes; rank order statistic;
asymptotic relative efficiency; GARCH volatility effect.

1. Introduction

Analysis of financial data has received a considerable amount of attention in the literature
during the past two decades. Several models have been suggested to capture special features
of financial data and most of these models have the property that the conditional variance
depends on the past values. One of the well known and most heavily used examples is the
class of ARCH(p) processes, introduced by Engle (1982). This process was generalized by
Bollerslev (1986) in a manner analogous to the extension from AR to ARMA models in
traditional time series by allowing past conditional variances equation. The resulting process is
called GARCH(p,q). Since then, ARCH and GARCH related processes have become perhaps
the most popular and extensively studied financial econometric models (Comte and Lieberman
(2003), Francq and Zakoian (2004), Lee and Taniguchi (2005)). For a class of GARCH(p,q)
processes, Bougerol and Picard (1992a, b) established necessary and sufficient conditions for
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the existence of a unique stationary solution and gave its explicit representation.

For an ARCH(p) process, Horvath et al. (2001) derived the limiting distribution of the
empirical process based on the squared residuals. Then they showed that, unlike the residuals
of ARMA models, these residuals do not behave in this context like asymptotically
independent random variables, and the asymptotic distribution involves a term depending on
estimators of the volatility parameters of the process. Later, Berkes et al. (2003a) extended the
same result to the class of GARCH(p,q) processes. Also Lee and Taniguchi (2005) proved
local asymptotic normality for ARCH(<) processes, and discussed the residual empirical
process for an ARCH(1) model with stochastic mean.

Two sample problem in the ii.d. settings is one of the important statistical problems. For
such a problem, the study of the asymptotic properties based on rank order statistics is
fundamental and an essential part of nonparametric statistics. Many researchers have
contributed to their development, and numerous theorems have been formulated in various
testing problems. The classical limit theorem of a properly normalized two sample rank order
statistic which generated much interest in this area is the celebrated Chernoff Savage (1958)
theorem. They have also proved that the asymptotic normality property is valid in the
non null case, subject to certain regularity conditions relating mainly to the smoothness and
size of the weights. The Chernoff savage (1958) theorem provides a useful guide in
investigating consistency and efficiency properties of most two sample linear rank statistics.
Moreover, under less stringent conditions on the score generating functions, Puri and Sen
(1993) formulated the same theorem for the one sample, two sample and k—sample
problems. Thus, this study motivates us to consider two independent samples from
GARCH(p,q) processes {X;}, a target process and {¥;}. The corresponding squared innovation
processes are, say, {ﬁi,t} and {fZ,t} with possibly non Gaussian distributions F and G. In
order to highlight the problem of testing the equality between these distributions, a
nonparametric technique is employed based on the two sample rank order statistics. Such
statistics serves as a basis for the comparison in terms of tests of goodness of . fit.

The object of this paper is to elucidate the asymptotic theory of the two sample rank
order statistics {Zy} for GARCH residual empirical processes based on the techniques of
Chernoff and Savage (1958) and Berkes and Horvath (2003a). Since-the asymptotics of the
residual empirical processes are different from those for the usual ARMA case, the limiting
distribution of {7w} is greatly different from that of ARMA case (of course the iid. case).
More concretely, the paper is organized as follows. Section 2 gives the setting of {Zw}
pertaining to empirical processes of the squared residuals from two independent samples of
GARCH(p,q) processes and derives its asymptotic distribution. This result, in Section 3,
facilitates the study of asymptotic performance of {7y}, for which, we assess the asymptotic
relative efficiency and effect of the GARCH specification for some GARCH residual
distributions. These studies help to highlight some important features of GARCH residuals in
comparison with the independent, identically distributed or ARMA settings.
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2. Two sample rank order statistics and results

In this section we consider an important class of nonparametric tests based on rank order
statistics (see Chernoff and Savage (1958)) for two sample problem pertaining to empirical
processes based on the squared residuals from two independent samples of GARCH processes.

A class of GARCH(p,q) processes is defined by the equations

Py 9
¥ 1O (0,)e, 02 (6,)=a,,+ ) a, XL, +> B, 00,(0,) t=L,....m,
t = i=1 Jj=1

0: t=_lx+1,...,0, (1)

where /. =max(p,,q ‘), {e} is a sequence of independent, identically distributed random
variables,

T T
- = Pxtqytl
6 = (Hx,o,...,éx,pﬁqx) =(ax’o,ax,l,...,ax,px,,Bx,l,...,ﬁx,qx) e®cR

is an unknown parameter vector satisfying ®so >0, @20 i=L..p,  f.,20 j=L..q,

and ¢ is independent of X..5 <! When P.; =0 J=L...4, the process {Xf} reduces to
ARCH(p,). Nelson (1990) showed that in the case of GARCH(1,1), the process X.} has a
unique stationary solution if and only if E(ﬂx.l T XL E 12)< 0 . Bougerol and Picard (1992a, b)

established strict stationarity and ergodicity of a general GARCH(p,q) process in terms of the
top Lyapunov exponent

Ay, = inf (1+1)" E{log|

0st<w

A,(8) 4, (8.) - 4, (e[} <0,

where 4,(,) is a matrix composed of the coefficients of .} and €, and s the
Euclidean norm. Henceforth, denote by F(*) the distribution function of & and we assume
the existence of a density /=%, which is continuous on (©.%).

Another class of GARCH(p,q) processes, independent of {X:}, is defined similarly by the
equations

Py q

Y = G’(ey)ft’ o'tz (ey)=ay,0+zay,ixzi+zy:ﬁy,jo-tz—j (0}')’ t=l...m,

i=1 j=l

0, t=-1,+1...,0, @

where /» =max( p,.9,) &} is a sequence of independent, identically distributed random
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variables,

T T
= = +q,+1
6, —(Qy,o""’ey,py+qy) "(ay,O’ay,l""’ay,py’iBy,O"By,l"""By,qy) e®c R,

@,0>0 a,, 20 i=1,..p,

, B;20  j=1..49, gare unknown parameters, and ¢ is

independent of Ys»$<? It is assumed that
A, = inf (1+0)" E{log|4,(5)4,&.)- 4|} <0

for the stationarity of {r} where 4(%) is a matrix composed of the coefficients of i} and
$/. In the case of GARCH(1,1), this condition reduces to (,.+a,.£)< 0 The distribution

function of ¢ will be denoted by G(x) and we assume that &~ G' exists, which is
continuous on (0.©).

In the following, we are concerned with the two sample problem of testing
Hy:F(x)=G(X) tor a1 o against Ha'F ()= G(X) for some x. (3)
First we consider the estimation of - and ¢». Suppose that observed stretches (X X,)

and (.- .Y,) are available. Then we can rewrite ©:(.) and ©/ 6,) as a linear function of

(ri.x2.,..) and @275, ), respectively. Following Berkes et al. (2003a), we define a
sequence of functions by recursion. Write

u, = (axyo, Appenr s Gy s byppenn bx,qx)r e RPH+
and
u, =(ay,0, Ay oo s Gy s by,l, e, by’qy)r c R/

If 9:2 P:_ then
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G (ux) = ax,O/(l - (bx.l oot bx,qx ))
G (ux) =4,

02 (ux) = ax,2 + bx,lcl (ux)

Cp, (ux) =a,, +byc, (ux) +et b, 10 (ux)

Cpnl (u,)= b, (u,)+-+ b, ¢ (u,)
cqx (ux) = bX,lcqx—l (ux) teoet bx,q,-lcl (ux)

and if 9x < P.  the above equations are replaced with

c(u,)=a,/(1- (b, +--+b,,))
ou,)=a,
'Cz (w)=a,+b,u,)
Culw)=a,, ,+ bx,lcqx (u)+--+ bx,q, a(u,)
c,, u,)= a,, + bx’lcpx_1 w)+-+ bx.q,cp,-q, (u,).
In general, if ¢ > /., then
() = b (u)+ b,c,(u) +- + bx,qxc,. » (u,).
They showed for the true value 9 that
o (@)= )+ D e (BN,

and analogously for 9y,

a; (8,)= c(6,)+ ) c,(6,)Y2:
i=1
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The corresponding logarithm of the quasi maximum likelihood functions of (X, -, X») and
(v, -+, Y,) is given by :

and
A 1& A 2
L(u)=——= logh (u)+<—
R )
where
n -1
h(u)= c,(u)+> @)Xl 2<t<m
i=1
and

n -1 k
h(u,)=cy(u)+Y )Y, 2<t<n

i=1

The quasi maximum likelihood estimators, respectively, are defined as

~ A

0,, = ag max{f,(u)u, e U} and 6, = arg max{l,(u,)u, e U,}

y.n

where

U, = { u,:f++ B, <p,, and r, <min (az’o, Aupseee s @,y ,b,,,,...,b,,q‘)

.
s max(a,,, a,,,... ,a b,il,...,b,,qz)Sr,}

zp;, *

with 0<r.<r,0<p,o<1 and 4.7, <P.o. Here, it is assumed that %x€U. and

0,€U, We also assume that
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~

7

x,m

1/2

m -6,

124 _
=0,() and |4, -6,|=0,0). "
For the validity of (4), Berkes et al. (2003a) gave a set of sufficient conditions without

assuming that € and ¢ are standard normal (see also Comte and Lieberman (2003)).
The corresponding empirical squared residuals are given by

A

& =X,2/}Az,(éx_m),23tSm and 5,2=K2/i1,( ),2SISn

y.n

For the testing problem (3), we begin by describing our approach in line with Chernoff and
Savage (1958). Let N =m+n_ Ay =mN  and we assume that the inequalities © <40 < Ay <1-4, <1
hold for all N and some fixed 40 <%. Then the combined distribution is defined by

Hy(x) = A F()+(1-1,)G(x)

In the same way, if F,(® and G.(x) denote the respective empirical distribution functions

{¢.} and ¢ '}, the corresponding empirical distribution is

Ay () =4 F,(x)+ (1= 4,)G, (%) )
Note that
0,0 =m" () - F))=m™ S [1E? <x)- F )] o
and

V (x)=n"? (c";n (x) - G(x))= n? 2[1(53 < x)— G(x)] o

where 1(4) is the indicator function of the event A. Berkes et al. (2003a) showed that (6)
has the following representation

U, (x)=U,,(x)+ Axf (x) +1,,(x) (®)
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where

U, (x)=m"? i [I(f:,2 < x)— F (x)] 4, = Z m’? (éx,i -0, )’x,i
t=1 ’

0<isp,+q, (9)

and S . |7, () 1=0,() with 7.0 = E[/e?@)] and ., = Elx2/6?0)] 1<isp, 1, = E[cf_,(@,)/o-f(Bx)]’

17249, 1p the same way, the corresponding representation of (7) is given by

V,(x) =V, (x)+ A4, xg(x) +7,(x) (10)

where

v,0=n" Y e <x)-60)] 4= > (6,6, ),

OsiSpy+qy (11)

and SUP. 1T, = 0,()  with 7,0 = E[/02@,)] and 7. = Elx1s026,)], 1<i<p,
Ty = Ep20,)020,)] 1< isgq, Write Fo(y=m™ % 162 s x) and

Gulxy=n” ,Z=1 16 < x). From (8) and (10), the expression (5) then becomes

Hyy(x) = 3,()+m™ " 2y A ef (x) + 07 (1= Ay ) A, xg (x) + 17y () (12)

where Hw(x) = F,(X)+(1-)G,(¥) and 7n(x) =m™?Ayq, (x)+ 12 (1= Ay)1,(¥) . The

decomposition (12) is important and will be used repeatedly in the sequel.

2

. _ . . . . . a2 A2 2 .
Define Sw. = 1, if the 4™ smallest one in the combined residuals Erreesby &1, 80 s

from €3, €. and otherwise define Svs=0, Now, let us consider the two sample rank
order statistics of the form

l N

T, = —Z RN,iSN,i

m i

where the R

¥. are given constants called scores. A key feature in the Chernoff Savage
theory is that a linear rank statistic can be represented in the form of a Stieltjes integral.

Thus, if the weights for a linear rank order are functions of the ranks, an equivalent
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representation of Tv is

N .
T, = IJ[W Ax)}dF,,, ). .

where Rw,=J(@W(N + 1) and J@),0<u<l s a continuous function. Several typical
examples of J which have been reported in Puri and Sen (1993) are stated below:

(i) Wilcoxon's two sample test with J(#)=u,0<u<l

(i) Van der Waerden's two sample test with J(#)=®(),0<u <1 where
0
O(x) =@27)"* [exp(-£12)dt,

(iii) Mood’s two sample test with J(#)= @-£)%0< u<l,

(iv) Klotz's two sample normal scores test with J(x)=(® @)}, 0<u<1.

To elucidate the asymptotics of (13), we impose the following regularity conditions.

Assumption 1.

(A1) ) is not constant and has a continuous derivative ¥'®#) on (0,1).

(A2) W@l < K[u@-w)]"™ gnd V'@ < Ku@-w)]**° for some 6>0 and K is any
constant which does not depend on m, n, N, F or G.

(A3) ¥ (x), xg(x), xf'(x) and *&'(x) are uniformly bounded continuous, and integrable
functions on (0,0,

(A4) There exists ¢>0 such that F(x)2c{xf ()} and G()2cfxg(®)} for all x > 0.

(A5) W (<KHy(x)1-Hy(x)) and g ()< KH y(x)(1-H y(x)) for all x > 0 and K > 0.

Note that the above examples of J satisfy the conditions (A.1) and (A.2). We also require
the following assumption.
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Assumption 2.

(B.1) & and & are nondegenerate random variables.

(B.2) E(g}): 1 , E(§,2)=1, El““'2

2+8 |2+

é
<% for some >0,

<® and E’f,z

The conditions (B.1) and (B.2) of Assumption 2 uniquely identify & and ¢, (see Berkes et
al. (2003a)). In order to state the result, we introduce the following:

T
1 0 0
U, =E{——| —0c’(@ o (2
x 0'14(0)‘) 69 O-r(x) O-t(x)J

x X

T
0= Bitr| 2 ilo)| Z-oile)

R, =(Est U, R,=(EE' -1,

1 1 0
Veg = 2( )_O-tz(gx) Vye = o2 —a_g_o-tz(ey)
’ t y y

Under certain regularity conditions, Berkes et al. (2003b) showed that U:, Uy and R., R,

are non singular. Now, using standard arguments, it is seen that the i element of %:» and

¢, admits the representations

é;’m—ﬂ’x=L22;,(8,2—1)+op(m'“2), 0<i<p, +gq,
m - ’

and
g -6 13 Zi (g2 -1/2 <i<
yn Yy T I,t(gt _l)+0p(n ), O_Z_py+qy
=2
i i . ~ _ . .
where Zx and %y are the i™ element of Us7x and U;7 v+, respectively. Write

5::,»‘ = E(Z;,r), 0<i<p, +qx, 5y,i = E(Z;,t), OSiSpy+qy, and %= = (Tx,O"" ’ Tx.p,ﬂ:,)r and

Ty = (Tw"" , Tmmyy (recall (9) and (11)). Then we have the following result, whose proof is

given in Section 4.
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Theorem 1. Suppose that Assumptions 1 and 2 hold and that, in addition, b.m and éy,n are

the quasi maximum likelihood estimators of b, and gy satisfying (4). Then

Nl/z(TN_:uN)/O-N _d’W(Oal) as N—>oo,

where
= (J[H, (x)]dF (x) 2 =gl 0l +o, +yy 20
Hy N and ON =01y T Oy TO3y Ty
with
iy =2(1—AN){ [y (e, 9)dF (F () + = /1 % (B, y)dG(x)dG(y)}
x<y N x<y
0-22N = ("xT,NU;leU;l(”x,N, O-3N ?,. NU ‘R U*l¢yN
and
1-4,
7N=2(1_/1N Lx,N er15x1+l’ Z »i yl
ﬂ’N 0<isp +q, 0<i<p,+q, ,
where

Ay (5, y)= G -G H, @V TH )]
By(x.y)= Fx)(1- FO)W'[Hy@VH, )],
Pon =~ )" (1= 1) [3f ()T [H ()G () x T,

w=(1=-2)" |z8(2)) [Hy(D]dF (2)xz,
L.y = [0 I H, 0OV H, () HGx)dG(r)

L,y = [[w,(x)zg(2)J [H, (V' [Hy (2)] dF (x)dF(z)
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with

V)= Ju-Df@d = [a-Deds
0 an 0

Remark 2.1, If &} and &! are Gaussian, then R =2U. and & =2U,  respectively.

Remark 2.2. The terms Cav, O and v depend on the GARCH volatility estimators 0.m

~

and O Hence, the asymptotics of {TN} are greatly different in comparison with the

independent, identically distributed or ARMA settings.

Remark 2.3 For {} to be practically feasible, it is necessary to replace ¢ ¥ which
depends on several unknown parameters and functions by a consistent estimator ¢ v. Observe
that Gxi%xi2 8,57, 05i<p . +gq,, 05j<p,+4q,, and ¥.(x) and l//y(x)’ are expected
values and can be consistently estimated by the corresponding averages. Note also that
UZMRU and U,'RU,' are the asymptotic covariance matrices of Jn6..-6.) and
NG

yn = 0,), respectively, and their estimation is discussed in Gouriéroux (1997).

3. Asymptotic performance of {Tw}

The limiting distribution of v} given in the preceding section facilitates the study of
relative asymptotic efficiency and GARCH volatility effect. Thus we may proceed to

demonstrate empirically these aspects of {Tv} for some GARCH residual distributions.
3.1 Asymptotic relative efficiency

This subsection considers the assessment of asymptotic relative efficiency among different
tests based on {x}. To begin with, let us state a set of Pitman regularity conditions which
makes the calculation of efficiency for two test sequences quite easy in the case of finite

sample sizes. Suppose that Tv is a test statistic based on the first N observations for testing

H,:0 =6, against H4:0>6, with critical region I~ 2 4x.a . Further, suppose

(i) Alf?wP"»(TN Zl”-“)za,‘where 0<a <l is a given level;
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(ii) there exist function “®) and o¥(6) such that N'*@y -4y (@))/o, (@) —>x(0.1)
uniformly in 9 € 60,6, +£] &> 0;
Gi) #v(0)>0;

(v) },if,nw[/‘b(eo)/O'N(eo)]= c>0

Then the asymptotic power is given by 1~®(4 -6¢) where 4 =07(1-a) The quantity ¢
defined by (v) is called the efficacy of T». It is known that the asymptotic power, in addition
to providing a measure of performance, also serves as a basis for the comparison of different
tests.

) . . .
Let T® = {sz)} and T @ = {TIE})} be test sequences with efficacies €1 and €2, respectively.

Then the asymptotic relative efficiency (ARE) of T relative to T® is given by
1 2 2/ .2
e(T(),T( ))=c1 /2

Now consider the GARCH(1,1) process given by

{G,(Bx)at, ol (6,)=a,,+a X +B.0.(6,), t=1....m,
Xt — B > >
0, 1 <0,

where &} is a sequence of independent, identically distributed random variables, %xo>0:

@20, B,,20 E(/’x,1+ax.1€:2)<0, and & is independent of X. <t

Another GARCH(1,1) process, independent of {X,}’ is given by

1o (6,)¢, 02(8,)=a,,+a,, Y2 +B,,65(6,), t=1.....n,
"o, £ <0,

where {f,} is a sequence of independent, identically distributed random variables, so > 0:
@y, 20, §,,20 E(,, +a,c?)< 0 and ¢ is independent of Ys»8 <1,

Based on the results of Section 2, we consider the scale problem in the case of
G(x)=F(fx), 6>0, when F is arbitrary and has finite variance ¢r. This motivates the two

sample testing problem for scale as follows;
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Hy:0=1 guinet H,:0>1

For this we first evaluate the efficacy of the Wilcoxon, Van der Waerden, Mood and Klotz
tests by applying Theorem 1 to the corresponding J function. We begin with Wilcoxon’s W

test, whose score function is given by J®)=u, 0<u<1 Henceforth, for the sake of simplicity
, assume that m =n= N /2 Then the mean is

Ly (0) = % [(F()+ F(0x))dF (x)

and that #»(9) is continuously differentiable with respect to @ at @=1 under the integral

sign, we have #» M=+ [*/ (04 and the variance under Ho:0=1 is

O'VZV(D =0'§,,1(x)+0'§,’2(x)+0';,’3 +7W(1)’

where
5 1) ljzd Usz !
) = | fuau | =2
o3 0=2 ([ wa] o 3(15 - —-( [ (2)ee)
and |
7w 0 =C, [[y.@3 ) sy + C, [, (x)af* () £ (2)dndz
with

_ -1 -1
Cx—[xO’ xl’TxZ:k] Rxe [x0= xl?sz]T

-1 -1
C [Tyo’ yl’Tka] RU [yO’ yl’TyZ]r

=7,00:0 + 721051+ 7:20,5 and C, =7,.00,0 +7,10,1+7,,0,,
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Thus the efficacy of the W test is
r
¢y =ty )/ oy (1)

In the same way for Van der Waerden's VW test with J(#)=® '(u), 0<u <1, the
efficacy is

Sy = My (D07 (1)

where

Hiy W =1 [xh()dx 3 02, (1) = 0%y, (0 + 05y () + Ty 5D+ 7 (D)
with

oy ()= 1j(q)-‘ () du— ( 1jcp—‘ (u)dujz -1
ot a0 =2 ([ @] oy a0 =2 {[rsras]

and

Yo ) = C, [[w. ) yhx)R(y) f ()ddxdy +C, [, (0)zh(x)h(2) £ (2) vz
and

h(s) = £3()/ PO [F(s)]},

where

P(x)=D'(x)

2

For Mood’s M test with J/ ()= (” _%) » 0<u<l the efficacy is

ey =iy (D)o, )
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where,

Q)= jxh"(x)dx and On D=0, +05,M+oh 1) +7, 1

with

1 2
o= —%)4du—[](u—%)2du] L

180,

0520 =C,( [h) f@dx) o, ()=C, ( [2h(2) f@d) g

7 ) =4(C, [u. k() f ey +C, ([, (x)zh(x)h(z) / (2)dbndz)
and 1) =(F()-1)f*(s),

Finally, for Klotz's K test with J(#)= (q> _l(u))z, 0 <u <1 the efficacy is

cx = ux (/o (D) )

where,

He)= [xh (e o o2(W) =02, ) +0%,()+02 1)+ 7, (D)

with

o2, ()= lj(cp-1 ) du —(](d)“l(u))zduj =2
oL O=C, ([ WfWd) ol 0=C,([H @ r@E)
7 =4C. [ Ik OB 0 f ydsdy+E, [ (x)2h GoON' (2) f (2)ds)

and ' (s)=h(s)D(F(s)).

We are now ready to list the ARE formulas for the above tests. Hence, from the definition
we have the following:
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VW)= ey, (M VW)= [chy . e(KJW)=chchy,

oK)=} fc . oM, K)=cl [ck, e(M.W)=c], /.

These formulas provide a basis for comparing the six tests for different distribution F. In
order to approximate values of e(:, -), we need to specify F. For this, let us suppose that &)
is a sequence of iid.(0,1) random variables with continuous symmetric distribution F ' and

density S *. Then

) {(2)17‘(&)-1, x>0,

x<0.

We now compute the preceding distribution function in the following particular choices
of F'.

(i) F'(Normal) : [x)= JOm™ e = gy = 27y V262, ye R

In this case, T =2F(F)-1 @) =@m) e, x>0

S )= [ 2 e i 1 - 27 e, £ oy el A
(ii) F'(Double exponential) : ' »*=(*’ [atetar=1-2"e, 0 (3)=2""e MyeR

~®

-1
In this case, an(x)=1—e_&, fDE(x)z(z\/;) e, x>0
* * - .
Gii) F*(Logistic): ) =1/(+e?) fi)=e?/(1+e7) ,yeR

In this case, 1 (*)= (- e_ﬁ)/(l * e_J;), folx)= eﬂﬁ/\/;(He_‘/;)zx >0

In our case, Tv = Tv(F) was constructed from the empirical residuals {z,2} and {Z,%}. In the
same way, if we construct it replacing {&,%} and {&,%} by {&%} and {&7%}, respectively,
then it becomes the usual rank order statistic given in Puri and Sen (1993) which is denoted
by T v . To facilitate comparisons among the tests for m = n = N/2, Fx, Fox and 1, and
parameters, set ®o=®:0 =@, 0, =0, =0a,,s and Bi=F8.1=F,. Then the protocol of the
study is the following. For % = 0.1, @ = 02, A = 02 and m = n = 100, 300, we generated
realizations of X and Y. All the estimation results below are based on 100 replications. Table
1 reports various values of e(-, -) in the iid. setting, that is, Ty for F = Fx, Foe and A,
and o1 () =0y, (1 0% (1. 04, (1) and oM. Based on our setting, that is, Tv(F), Tables 2, 3

and 4 provide these values in the cases of m = n = 100, 300, (ao’“vﬂl) = (0.1, 0.2.0.2), and
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o’M=0y(1), o W) oy() and o2Q).

Table 1 Various values of €(+) based on Tv'

Distribution
ARE FN FDE F L
e, yw) | 04689 | 17273 | 22320
e(M, W) 03662 | 02492 | 0.2170
e(w,K) 09978 | 1.0200 | 1.5631
e(M,vw) | 01717 | 04305 | 06145
e(k,vw) | 04699 | 10934 | 12118
e(M,K) | 02542 | 03392 | 0.3654

Table 2 Various values of () based on Tx (Fx)

ARCH(1,1) GARCH(1,1)
m=n =100 m=n =300 m=n=100 m=n=300
ARE a,=0.1a,=0.2, a,=0.1,a,=0.2, a,=01a =02, a,=01,a, =02,

B, =0.0 B, =0.0 B, =02 B =02
e, VW) 0.4982 0.4784 0.4812 0.4751
e(M, W) 0.4288 0.4032 0.3982 0.3863
e, K) 0.9399 0.9581 0.9421 0.9706
e(M, VW) 0.2068 0.1864 0.1932 0.1819
e(K,yw) 0.5033 0.4815 0.4932 0.4786
e(M,K) 0.3108 0.2854 0.2998 02771

Table 3 Various values of ¢(.-) based on Tw (% DE)
ARCH(1,1) GARCH(1,1)
m=n =100 m=n = 300 m=n =100 m=n =300
ARE a,=0.1,0,=0.2, a,=0.1,a =02, a,=01a =02, a,=01,a =02,

B, =00 B, =0.0 B =02 B =02
e, vw) 1.7525 1.7348 1.7481 1.7311
e(M,W) 0.3057 0.2833 0.2963 0.2712
e(w,K) 1.0042 10116 1.0098 1.0166
e(M, VW) 0.5304 0.4936 0.5082 0.4642
e(K,vW) 1.0612 1.0723 1.0685 1.0794
e(M,K) 0.3831 0.3614 0.3756 03522
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Table 4 Various values of () based on Zv(Fi)

ARCH(LD) GARCH(1,1)
m=n =100 m=n = 300 m=n =100 m=n = 300
ARE a,=0.1,a,=0.2, a,=0.1,a,=0.2, a,=0.10a,=02, a,=0.1,a,=02,
B, =0.0 B, =0.0 B =02 B, =02

e, vw) 27142 2.7480 27331 27671
e(M, W) 0.2594 0.2349 0.2402 0.2302
e(,K) 15917 15774 15812 15716
e(M. VW) 0.6527 0.6302 0.6441 0.6262
(K. VW) 1.1423 1.1583 1.1513 11878
e(M,K) 0.4228 0.4047 0.4191 0.3938

An examination of the ARE values in Tables 1-4 reveals some distinctive features.
Evidently, the values in Tables 2-4 are intrinsically stable with respect to the choice of m = n, the
parameters and distributions, but differ from those in Table 1 because of the asymptotics of

the volatility estimators 9.n and éy,n. Interestingly, however, when m = n is increased, the
values for the tests in the GARCH(1,1) case are closer to those in Table 1 than for the same
tests in the ARCH(1) case. Roughly speaking, the contributing factor for this claseness is the

weights 1/07(8.).8.,>0 and 1/07(,).8,:>0 in the quantities C.-C. and C,.C, which

A a

reduce the effect of ?x» and 9y~ respectively, while causing only little change in # = F., On
the contrary, the tests in the latter are strong competitors to the tests in the former for all
m = n, the parameters and distributions. In addition, for distributions F= Fpz and F= F; with

heavier tails than F'= Fy, the W test is superior in that the values are greater than or equal to
one. Likewise, the VW and K tests outperform their counterparts in the case of F=Fy. We
also observe that the VW test is much less effcient than the K test for F= Fpp and F=F;. The

M test performance is the poorest for all m = n, the parameters and distributions. We
therefore summarize by saying that the VW and K tests are preferable if the distribution is
normal while the W test is preferable if the distribution is logistic.

3.2 GARCH volatility effect

In this subsection we study a distinction of 7~ and TY'  in terms of their levels of tests.
For “6(0,1), write Za =®_1(1‘“). Denote by #4 the mean of each test and write of =07 (1),
Suppose that ¥'* (T4 - 4,)/o,—%> ¥ (0.1) holds. Then the test N (17 - m)/e1 2 4, pas

nominal asymptotic level & as N—>© We assume & to be less than 05 so that A > 0.
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For this 4, let v =P V@ - m)fo 2 ﬂa}, where ©*=o*(1) Then % = IM.%v exists
and is given by @ =1-®(2.6) where 6 =0,/0 _ Henceforth, we write ©=0r if the concerned
distribution is F. Since or 20,. @2,

To distinguish how much the actual & varies from the nominal &, we use the level @ = 0.05

for which %os = 1.645. Based on the preceding realizations of X/ and Y, and F=Fy, Fpp and
F;, we provide the results in Tables 5-7.

Table 5 Actual € =1-0(4,6),6=0,/c , when nominal level & = 0.05 based on TN(F N)

ARCH(1,1) GARCH(1,1)
5 m=n =100 m=n=300 m=n=100 m=n = 300
a,=0.1,a,=0.2, a,=0.1,a,=0.2, a,=0.1,a,=0.2, a,=0.1,a,=0.2,
B, =00 B, =00 B, =02 B, =02
2% 0.8712 0.8917 0.8858 0.9106
&, 0.0759 0.0712 0.0725 0.0671
S 0.9150 0.9246 0.9151 0.9316
B, 0.0661 0.0641 0.0661 0.0627
S 0.7841 0.8014 0.7913 0.8193
&, 0.0986 0.0937 0.0965 0.0839
¢ 0.9123 0.9221 0.9124 0.9309
@, 0.0667 0.0647 0.0667 0.0628

Table 6 Actual @=1-®(4,8),6=0,/c , when nominal level & = 0.05 based on Ty (Foe)

ARCH(1,1) GARCH(1,1)

. m =n = 100 m = n = 300 m = n = 100 m = n = 300
a a,=0.1,a, =02, @, =0.1,a, =02, @,=0.1a =02, a,=0.1,a =02,

B,=0.0 B, =0.0 B, =02 B, =02
S 0.9042 0.9186 0.9072 0.9248
&, 0.0685 0.0654 0.0678 0.0641
Sy 0.8681 0.8752 0.8702 0.8843
& 0.0766 0.0750 0.0762 0.0729
Su 0.8163 0.8272 0.8194 0.8391
@, 0.0897 0.0868 0.0888 0.0837
123 0.8726 0.8833 0.8881 0.8963
&y 0.0756 0.0731 0.0720 0.0702
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Table 7 Actual & =1-0(4,6),6 =0,/ ¢, when nominal level @ = 0.05 based on Ty (%)

ARCH(1,1) GARCH(1,1)

5 m=n = 100 m=n = 300 m=n= 100 m =n = 300

a @, =0.1,a,=0.2, a,=0.1,a,=02, a,=0.1,a, =02, a,=0.1,a,=02,
B, =0.0 B, =0.0 B, =02 B, =02

S 0.9263 0.9341 0.9275 0.9417

&, 0.0638 0.0622 0.0635 0.0607

S 0.8418 0.8576 0.8492 0.8636

&, 0.0831 0.0792 0.0812 0.0777

% 0.8378 0.8412 0.8380 0.8462

a, 0.0841 0.0832 0.0840 0.0820

e 0.8514 0.8682 0.8594 0.8777

o 0.0807 0.0766 0.0787 0.0744

Tables 5 -7 show that the values of @ differ from the nominal level & = 0.05 with respect
to the choice of m = n, the parameters and distributions. It is also seen that these values

ex,m and

9,.. In the case of GARCH(1,1), the values for the VW, K and W tests in Tables 5, 6 and 7,
respectively, are closer to @ = (.05 than those in the ARCH(1) case. This closeness is due to

A A

decrease moderately as m = n increases. This decrease is due to the asymptotics of

the effect of %un and %» in the GARCH(1,1) case, which is less severe than in the ARCH(1)

case when m = n increases. For the M test, the difference between @ and & = 0.05 is

quite substantial for all m = n, the parameters and distributions. Moreover, it shows the effect

of skewness on the level. As is typically the case when ¥ =F. is skewed to the right, @ >
« for the lower tail rejection region. It must be stressed that, in general, the closeness of &.

to @ depends not only on the parameters but also on other aspects of F=F  The overal

. . . - . PS
conclusion is that the asymptotic level of Ty is different from that of Iv

effect of the GARCH specification.

because of the

4. Concluding Remarks

In this paper, the limiting Gaussian distribution of the two sample rank order statistics

{TN} pertaining to empirical processes of the squared residuals from two independent samples
of GARCH processes has been elucidated. A striking feature is that, unlike the residuals of

ARMA processes, the asymptotics of {TN} depend on those of GARCH volatility estimators. It
is well known that these results are widely used to study the asymptotic power and power
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efficiency of a class of two sample tests. These aspects of {TN}, such as the asymptotic
relative efficiency and GARCH volatility effect for some GARCH residual distributions have
been illustrated numerically, which highlight some interesting features in the iid. and in the
GARCH residual settings.

It is possible in this framework to cover a broader class of distributions with nuisance
prameters. Then the result would be applied to some time series processes. This subject
merits further research.

5. Proof

In this section we provide the proof of Theorem 1. Write
N = A
Ji—H, \=J|H -H, VI\H, |-—J|H
| WL N R PN

(
+{J[—N—ﬁ] J[H,]- (N lH ~-H )J'[H ]}

N+1

and 9F, =d (Fm —-F+F ) . Then the statistics (13) becomes
Ty=py+By+B,y +Ciy +Cyy +Cyy

where
By = [J[H,]d(F, - F)),
By = [(By—Hy ) [H,)dF x),
Ciy =°N__41r1 (A, [H,)dE, (),

Cow = [(By-Hy)J'[Hy)d(F, - F)),

C3N=j{.l[7£—l J J[H,]- ( N1H -H )J’[H] F(x),

To proof this theorem, we are required to show that
(i) Bww+Buw has a limiting Gaussian distribution, and

(ii) the C+ terms are of higher order.
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To begin with let us shoe statement (i). From (8) we notice that

B = [J[Hy)d(F, - F)x)+m™" 4, [J[H,]d[xf (x)] + higher order terms

(15)
Then by partial integration of Bav, and adding it to (15), we obtain
N (B + By ) = N" (1= 2,){ [sw)d (B, - F) () - [s'(0)d (G, -G) ()]
-m 4, [xf (x)J'[Hy]dG(x)+n7 4, [2g(2)J'[H]dF(2)
+ higher order terms.
=ay +b, +c, +d, + higher order terms, (say), (16)

where

s@) = [JH,WHGG), s )= [JH,WWFQ),

and Anvs (x)+ (=2 )s(x) = J[H y (0)]- J[H y (x,)] with % determined somewhat arbitrarily, say
by Hy(x))=1% .

Let us compute the variance of (16). From the result by Puri and Sen (1993, p.97 99), we
obtain

O-IZN = Var(aN + bN) a7

Similarly, we can compute the same for ‘¥ and dy by first noting the result of Tjdstheim
(1986) that

A

Var(m2(6,, -6, )=U2RUZ _, Varln(6,, -6, ))=U; R U

yin y

Hence from (9), (11) and (16), we obtain

022N = Var(cN) and 032N = Var(dN) (18)

As part of the main variance terms, we have only to evaluate
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Kiy= 2E[a1vczv] and Kon = 2E[bNdN],

since {Xz} and { z} are independent. From (16) we obtain

K,y =2Nm™ (1= 4, ¥ [[E[m"(F, - P4, b ) (8, () MG (x)dG ).

But by result of Horvath et al (2001), it follows from (9) and (14) that

E[(mm(F,,,-F)(x))Ax:] wx(x)Z 7
Thus,

Ky —2(1

::Il x,i

and analogously,
2N _2(1 A )LyNZTyl Vi

Adding Kiv and Kon yields ¥¥ defined in Theorem 1.

Hence, using (17), (18), the term 7~, and the central theorems given by Horvath et al
(2001), and Tjdstheim (1986), we may conclude that

N (B +Byy) oy —2>N0O)) . Noow

Next we show statement (ii). For this purpose we need the following elementary results
(see Puri and Sen (1993, p. 400)).

(B.1) 4H y 2 AydF 2 AdF
€2 FA-F)SH,(1-Hy) /A, <Hy(1-Hy)/ A}
Let (@nsBx) be the interval SNe, where

Sy, ={x:HN(1_HN)>nez'O/N} (19)

Then 7%= can be chosen independently of F, G, and Ay so that
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Ple? Sy t=1,.om, &l eSy t=l...n|21-e
Let us first evaluateCin. Substituting (12) and 4F, =d (Fm -F+F ) into Civ produces

-1 - ,
Cox =7 [ 0T [H, ()] dF, ()
1/2

TNV +D)

1/2
n

T N(N+1)
-1/2

_ ’]’:f —4, [2 (o) [Hyy (6)] d[xf ()]

———— 4, [xf (x)J[Hy (0)]dF, (x)

4, jxg(x)J' [H, (x)]dF,(x)

-1/2_1/2
m n

m LA, |xg(x)J'[Hy ()] dlxf ()]
1

mAZ Ixf (x)J'[Hy, (x)]d[xf (x)]+ higher order terms.

JLM“

C,y + higher order terms,  (say).

The proof of Cuw =0p(N _1/2) is identical to that of Puri and Sen (1993, p.401). Next consider
Cix . From (A.3) it is seen that

lC12N =

l ¢,
A ~ j J'[H, (x)E, (x)
In the same way as the proof for CuN, we have

1 , 172
< 7' [H @) dF, (x)=0, (N ),

which, together with the fact ™ = Op(mmN _1), implies Cny = "p(N _1). Similarly, we

can prove that Ciunv =0, (N _1) Next we turn to Cuv. In what it follows, we mean that all

mathematical relations, e.g., == etc hold with probability 1—€. In view of (A.2) - (A4) and

(19), it follows that
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-3/248

-1/2
|C14N|SK%N—|Axl L [H,0)(1-Hy@)] "~ dF(x)

<k™ ajo{[my(8)0-Hy (8] ")

-1/2

=0, {-’"TV— N“”} =o,(N7)

(20)

hence, Cuwv =9, (N _“2). The proof for Cisw = Cisn ="p(N _l) is similar to (20). Consequently,
we have

Cw =0, (N S )

Next we consider Cow By analogy with the first C term, we have

Cor = [[#y(x)- Hy ()] [Hy(0)])d (F, - F) (x)

1/2
m

+ A, [ o) [H, (0]d(F, - F)(x)

1
n/2

+—N~Ay xg(x)J'[Hy (0)]d (F, - F)(x)

~1/2_1/2
m n

N
+% A2 [xf ()T [Hy ()] dIxf ()]

2 A J'[ j{N ()-H, (x)] J’ [ H, (x)] d[xf (x)]+ higher order terms.

+

AA, |xg()J'[Hy (x)]dlxf (x)]

6
= Z C,,y + higher order terms, (say).
i=1

The proof of Con =0p(N —1/2) follows precisely on the same line as in Puri and Sen (1993,

p.401). Next consider szzv, for which, it suffices to show

LN: ¥ )JH, (D(E, - FXx)=0,() -
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From (A3) - (A5), (19), and Theorem 2.11.6 of Puri and Sen (1993), we see that (21) is
dominated by

[ o{ By, (1-H)] ™" Ya (£, - F) )
=m 2 J‘S O{Nuz—ﬁ}l d[ml/z (F, -—F)(x)] | =0,()

Ne

- -1/2
Therefore Cun =0, (N ”2). Similarly, we can prove that Cuy = Op(N 1 ) The proof for Coan

and Cosv is analogous to (20). To complete the assertion for CzN, we evaluate Goav. Let

1,(8") =sup N"2 |94, (x) - Hy ()| < C' [ Hy (0 (1= Hy ()] (22)

where 6 >0, C"'>0, so that P(1,(8Y)21-€ (see Puri and Sen (1993, p.401). Then from
(A2) - (A4) and (20), it follows that

-1/2

|Coon] <= ol [ |N”2 (By-H,)T[Hy]|dF )
C m—I/Z

<=4, 10{[H (8)(1-Hy (5)] }
V2 . )
=0”{N—1m?}="p(N‘)> 5 >0.
Hence, Cusnv = Op(N _”2). Consequently we have
Cyn :op(N_m)

Finally, we consider Ciy . Following the preceding €2~ , and using
N - N - , N 4
J{imHN]_;J[HN]+(N+1 N N]J[¢HN+(1_¢)N—+1'HN] 0<p<l

we obtain
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N N L '
Cyy = [(N 17{ H){J'[¢HN+(1—¢)7V—HHN]—J[HN]}dFm(x)

1/2

1 N = ,
+ Nl A4, J‘xf(x){J [(oHN +(1—¢)7V_-HH"}J [HN]}dFm(x)

1/2

| . |
+ j‘xg(x){J’[(oHN +(l—¢)]—v—ﬁHN]—J [HN]}dFm(x)

—1/2 N ' _ ___]v__ ) _ I‘
A, ]—v—iﬂ{ -H ){J [¢HN+(I ¢)N+1HN] J[HN]}d[xf(x)]
-1/2_1/2 N A
A, xg(x){J'[coHN+(1—¢)mHN}—J'[HN]}d[xf(x)]
g

TG jxf(x){J'[MN +(1—go)N—]\_[‘_—l-fIN]eJ’[HN]}d[xf(x)]

+ higher order terms.

= Z Cv + hlgher order terms,  (say).
i=1

Let us first consider Cswv. From (12) we first note that

[coH @+0-p)- 2 (x)]/H @) =g+ (1-g) T

N+1H,(x)
+A- Q)N +1)7 [ 43 (x) + 1" A,xg(x) | [Hy (%)
+ higher order terms 23
From (23) we can write
H(x) = H,(x)+ N"20(1) (24)

with probability =1-€ where O(1) is uniform in x. Hence by (A3), (A4) and (24), we
obtain

@23)=1+0(N""?)
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with probability >1-¢€. Similarly we can prove
N - 1
{1 _|:(0HN(x) +(1 _¢)N_HHN(X)]}X [1 _HN(X)]_ 1+ O(N-l/Z)

with probability >1-e€. Thus, for sufficiently large N >0, we can find #>0 such that

ir;f[quN(x)m—co)%f%(x)}[l—{¢HN(x>+<1—¢>N—N;1—1-‘IN(x>H

<[ Hy(®)(1-Hy ()] > B

with probability =1-€. From the preceding arguments, observe that

1 N , N » ,
|CslN|S N2 J.Nm ﬁﬂN -Hy\\J |:¢HN +(1_¢)WHN:|_J [HN(x)] dFm(x)
1
= N _[IN (x)dF,,(x), (say). (25)

It is easy to show

[, LedF, < c'kfi+ /35-3’2]LNE [#, (- H, ) " dF, (x) 6

and

5-1
. 5-3/2
E L L(x)dF,(x) <C'K[1+°" ] L [H,(1-H,)]  dF o
Hence, v(¥) is integrable. Recalling (22), it is seen that Iy(x)—>0 i probability. By the
dominated convergence theorem, (25) - (27), we get Cuwn = "p(N _”2)‘ Next, consider Cay

Using the arguments of Cow , (A.3) and (A5), we obtain
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[Cann €7 lAI IEFGIY [wHwa—m%HN]—J'[HN(x)]Pme

g [ [He (=B, dF, 28)

with
6-1/2 5-1/2
E[ [Hy(-Hy)] " dF,@= [ [H,(-Hy)] " dF ) )
Then, by the dominated convergence theorem, (m'*N714,1)=0,(n"*N -1), (28) and (29), we
have Caw ="p(N _”2). Similarly, we can show Ciy =0p(N _”2). Next, we turn to Coan .

Following the arguments of Cawv, and using (A.2) - (A.4), we obtain

dF (%)

(Canls 2ozl [N | -

J{¢H +(1- ¢) ] J'[Hy()]

<K %ﬁlél[l +p7) [ [Hy (-8, ) dF ).

Then, by the dominated convergence theorem, similarly as in Csw, we can prove

Cuy = °p(N —”2). Next, consider Cisn. From (A.2) - (A4) and (28), we observe that

|

<O {m™ N7} [ [Hy (1 ~-B,) ] dF (%) .

ST
lC35N| <K oN x dF(x)

[qu +(1~ ¢) } J'[Hy ()]

- _ -1/2
Hence, we have Cisv =9, (N “2). Similarly we can show Ciwn =0, (N ) Consequently, we
have

Cyn =0P(N_1/2)

This completes the proof of the theorem.



Two Sample Rank Order Statistics for GARCH 587

Acknowledgement

The authors express their gratitude to the referee for his/her comments, which improved the

original version of this paper. We also wish to thank Professor Sangyeol Lee for his
comments.

References

[1] Berkes, I. and Horvath, L. (2003a). Limit results for the empirical process of squared
residuals in GARCH models. Stoch. Processes Appl. 105, 271 298.

[2] Berkes, 1, Horvath, L. and Kokoszka, P. (2003b). GARCH processes: structure and
estimation. Bernoulli 9, 201 227.

[3] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics 31, 307 328.

[4] Bougerol, P. and Picard, N. (1992a). Strict stationarity of generalized autoregressive
processes. Annals of Probability 20, 1714 1730.

[5] Bougerol, P. and Picard, N. (1992b). Stationarity of GARCH processes and of some
nonnegative time series. Journal of Econometrics 52, 115 127.

[6] Chen, M. and An, H. Z. (1998). A note on the stationarity and the existence of moments
of the GARCH model. Statistica Sinica 8, 505 510.

[7] Chernoff, H. and Savage, I. R. (1958). Asymptotic normality and effciency of certain
nonparametric test statistics. Ann. Math Statist. 29, 972 994.

[8] Comte, F. and Lieberman, O. (2003). Asymptotic theory for multivariate GARCH processes.
J. Multi. Anal. 84, 61 &4.

[9] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the
variance of UK. inflation. Econometrica 50, 987 1007.

[10] Francq, C. and Zakoian, J.M. (2004). Maximum likelihood estimation of pure GARCH and
ARMA GARCH processes. Bernoulli 10, No4, 605 637.

[11] Gouriéroux, C. (1997). ARCH Models and Financial Applications. New York: Springer.

[12] Lee, S. and Taniguchi, M. (2005). Asymptotic theory for ARCH models: LAN and residual
empirical processes. Statist. Sinica 22, 215 234.

[13] Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1,1) model. Econometric
Theory 6, 318 334.

[14] Horvath, L., Kokoszka, P. and Teyssiere, G. (2001). Empirical process of the squared
residulas of an ARCH sequence. Ann. Statist. 29, 445 469,

[15] Puri, M. L. and Sen, P. K. (1993). Nonparametric Methods in Multivariate
Analysis.Wiley: New York.

[ Received March 2005, Accepted July 2005 ]



