• Title/Summary/Keyword: GAL promoter

Search Result 98, Processing Time 0.023 seconds

Expression and Secretion of Recombinant Inulinase under the Control of GAL or GAP Promoter in Sacharomyces cerevisiae (Sacharomyces cerevisiae에서 GAL또는 GAP 프로모터 조절에 의한 재조합 Inulinase의 발현 및 분비)

  • 남수완;임현정정봉현장용근
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.445-452
    • /
    • 1996
  • To investigate the promoter effect on heterologous gene expression in S. cerevisiae, the recombinant plasmids pYI11, pYI12, pYI10-2, and pYIGP were constructed to contain the inulinase gene (INUI) as a reporter under the control of GAL10, GAL7, GAL1, and GAP promoters, respectively. When the yeasts transformants were cultivated on galactose-containing rich media, the cell growth reached to 36-39 OD600 at 72 hours of cultivation. The specific growth rates of the cells harboring the four different plasmids decreased similarly : they dropped from $0.24 h^{-1}$ during the glucose-consuming period to 0.04 -$0.10 h^{-1}$ during the galactose-consuming period (gene expression phase for GAL promoter system). After the depletion of glucose, the expression of inulinase gene was started and reached to maximal levels of 4.3(GAL1 promoter), 4.0(GAL10 promoter), 3.8(GAL7 promoter), and 1.6(GAP promoter) unit/mL at 72 hours of cultivation. Based on the maximal expression level and activity staining on the plate, the promoter strength was in the order of GAL1, GAL10, GAL7 and GAP promoter. While the GAL-promoter systems showed a high plasmid stabilities of more than 78%, the GAP-promoter plasmid revealed a lower plasmid stability of 55%. Most of inulinase activity (98%) was found in the extracellular medium, indicating that the secretion efficiency of inulinase is independent on the type of promoter.

  • PDF

Expression of Gal4-VP16 and Gal4-DNA binding domain under the control of the T lymphocyte-specific lck proximal promoter in transgenic mice

  • Ryu, Chun-Jeih;Whitehurst, Charles E.;Chen, Jianzhu
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.575-580
    • /
    • 2008
  • Thymocyte-specific transcriptional regulatory systems can be used to better understand the relationship between transcription and V(D)J recombination during early T cell development. In this study, we generated transgenic mice expressing the transactivator Gal4-VP16 or the Gal4 DNA binding domain (Gal4-DBD) under the control of the lck proximal promoter, which is only active in immature thymocytes. From these studies Gal4-VP16 and Gal4-DBD expression was shown to significantly alter thymic cellularity and differentiation without significantly changing the $CD3^+$ thymocyte distribution. Furthermore, the presence of Gal4-VP16 or Gal4-DBD in the transgenic thymocytes retarded the mobility of the Gal4 DNA binding motif as determined by a gel mobility shift assay, suggesting that the developmental alteration did not affect the functional property of the transgenic proteins. These results indicated that lck promoter-driven Gal4-VP16 or Gal4-DBD expression did not affect $CD3^+$ mature thymocytes, thus this system can be applied to study transcriptional regulation of transresponder genes in bigenic mouse model thymocytes.

The Optimization of Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter (GAL promoter에 적합한 효모변이주 Y334를 이용한 재조합 단백질 생산 최적화 방법 개발)

  • 강환구;전희진;이문원
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.181-187
    • /
    • 2000
  • The production of heterologous protein using GAL promoter in conventional S. cerevisiae has several problems to s이ve for c commercialization. In this research, S. cerevisiae mutant(reg1-501, gaI1), which cannot use galactose and has alleviated g glucose repression level, is used as host for optimizing induction of GAL promoter. In this experiment, the effects of specific g growth rate on specific recombinant protein expression rate were tested in both cases and optimum fed batch fermentation m method was obtained in both cases. Through these experiments, optimum condition of recombinant protein production by G GAL promoter using S. cerevisiae mutant (reg1-501, gal1) were found.

  • PDF

Analysis of Promoter Strength of Autographa californica Nuclear Polyhedrosis Virus IE1 Gene by Using Rreconmbinant Baculovirus

  • Cho, Eun-Sook;Park, Hae-Jin;Jin, Byung-Rae;Sohn, Hung-Dae;Kang, Seok-Woo;Yun, Eun-Young;Kim, Keun-Young;Je, Yeon-Ho;Kang, Seok-Kwon
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.2
    • /
    • pp.102-107
    • /
    • 1999
  • To analysis a promoter strength of Atographa californica nucler polyhedrosis virus (AcNPV) IE1 gene, an immediate viral gene, ${\beta}$-glactosidase gene as a reporter gene was introduced under the control of the IE1 promoter. The restriction fragment containing IE1 promoter and ${\beta}$-galctosidase gene from pAcIE1-gal were inserter into pBacPAK9 to yield transfer vector pAcNPV-IE1-gal. The pAcNPV-IE1-gal was cotransfected with AcNPV genomic DNA BacPAK6 into Sf9 cells to produce recombinant baculovirus AcNPV-IE1-gal. In addition, recombinant bacvulovirus AcNPV-gal, which express ${\beta}$-galac-tosidase under the control of the polyhedrin promoter, was constrer, was constructed to compared with AcNPV-IE1-gal. The recombinant viruses were respectively infected into Sf9 cells and characterized by the virus titer and expression of ${\beta}$-galactoxidase in Sf9 cells. The promoter strength of IE1 and polyhedrin promoters was determined by the amount of ${\beta}$-galactosidase secreted into medium by viral infection. The titer of AcNPV-IE1-Gal determined by plaque assays in Sf9 cells was similar to that of AcNPV-gal. However, expression level of ${\beta}$-galactosidase by AcNPV-IE1-gal was significantly lower than that by AcNPV-gal. In conclusion, promoter strength of IE1 was approximately 25-fold lower than that of polyhedrin.

  • PDF

The Study on Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter (GAL promoter에 적합한 효모변이주 Y334의 회분식 배양에서의 재조합 단백질 발현특성)

  • Gang, Hwan-Gu;Lee, Mun-Won;Jeon, Hui-Jin
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.476-481
    • /
    • 1999
  • S. cerevisiae mutant(reg1-501, gal1), which cannot use galactose and has alleviated glucose repression level, is used as host for optimizing induction of GAL promoter. The optimum concentration of galactose as inducer for recombinant protein production and the galactose consumption rate have been tested with S. cerevisiae mutant and compared with conventional S. cerevisiae. The extent of glucose repression were investigated for both strain and the degradation pattern of produced foreign protein have been compared in both cases. The effect of pH on foreign protein degradation pattern were studied for both strains. The secetion efficiency of both strains were carried out. Through these experiments, optimum condition of recombinant protein production by GAL promoter using S. cerevisiae mutant (reg1-501, gal1) were found.

  • PDF

Optimal Expression System for Production of Recombinant Neoagarobiose Hydrolyase in Saccharomyces cerevisiae (출아효모에서 재조합 neoagarobiose hydrolyase의 생산을 위한 최적 발현시스템)

  • Jung, Hye-Won;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.662-666
    • /
    • 2019
  • In this study, the NABH558 gene expression system was constructed to efficiently produce neoagarobiose hydrolase (NABH) in Saccharomyces cerevisiae strain. The ADH1 and GAL10 promoters of the pAMFα-NABH and pGMFα-NABH plasmids were examined to determine the suitable promoter for the NABH558 gene expression, respectively. The effect of promoter and carbon sources on NABH558 gene expression was investigated by transforming each plasmid into the S. cerevisiae 2805 strain. The NABH activity in the 2805/pAMFα-NABH strain was 0.069 unit/ml/DCW in YPD medium, whereas that in the 2805/pGMFα-NABH strain was similar (0.02-0.027 unit/ml/DCW) irrespective of the medium composition. The higher NABH activity in the YPD medium was due to the increased NABH558 gene transcription. NABH produced in the recombinant strains could degrade agarose to galactose and AHG. This indicated that ADH1 promoter was a more optimal promoter for the expression of NABH558 gene than the GAL10 promoter. The NABH activity induced by the ADH1 promoter was about 3-fold higher than that induced by the GAL10 promoter.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

Heterologous Expression of Human Ferritin H-chain and L-chain Genes in Saccharomyces cerevisiae (재조합 효모를 이용한 사람 H-Chain 교 L-Chain Ferritin의 생산)

  • 서향임;전은순;정윤조;김경숙
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • Human ferritin H- and L-chain genes(hfH and hfL) were cloned into the yeast shuttle vector YEp352 with various promoters, and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. Three different promoters fused to hfH and hfL were used: galactokinase 1 (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase(GPD) promoter and alcohol dehydrogenase 1(ADH1 ) promoter. SDS-polyacrylamide gel electrophoresis and Western blotting analyses displayed expression of the introduced hfH and hfL. In the production of both ferritin H and L subunits GAL1 promoter was more effective than GPD promoter or ADH1 promoter. Ferritin H and L subunits produced in S. cerevisiae were spontaneously assembled into its holoproteins as proven on native polyacrylamide gels. Both recombinant H and L-chain ferritins were catalytically active in forming iron core. When the cells were cultured in the medium containing 10 mM ferric citrate, the cell-associated concentration of iron was 174.9 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L and 148.8 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L but was 49.4 $\mu\textrm{g}$ Per gram(dry cell weight) in the wild type, indicating that the iron contents of yeast is improved by heterologous expression of human ferritin H-chain or L-chain genes.

Production of Glucose Oxidase Using Recombinant Yeast (재조합 효모를 이용한 포도당 산화 효소의 생산)

  • 전병원;김대혁
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.270-275
    • /
    • 1996
  • Heterologous expression of glucose oxidase gene using recombinant yeast has been carried out. Polymerase chain reaction was conducted to obtain the gene encoding glucose oxidase from Aspergillus niger and sequence comparison indicated the cloned 1.9kb DNA fragment appeared to be the glucose oxidise structural gene containing a signal sequence for extracellular location. Transforming shuttle vector was constructed with YEp352 to express the cloned glucose oxidase gene under the control of either GAL1 or GAL10 promoter. Plate assay of recombinant yeasts has shown that GAL1 promoter was more effective in yielding glucose oxidise than GAL10 promoter. Among the five different concentrations of galactose tried, 1% galactose showed the highest induction of glucose oxidase. Cellular localization experiment of recombinant enzyme using spheroplast revealed that most of enzymes (80%) were secreted into culture media in contrast to A. niger. There is no difference in heat-stability of recombinant enzyme up to $50^{\circ}C$ compared to the glucose oxidase from A. niger However, a dramatic reduction of enzyme activity was observed in both enzymes at $60^{\circ}C$.

  • PDF

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.