• Title/Summary/Keyword: GAIT VARIABLES

Search Result 206, Processing Time 0.024 seconds

Gait Asymmetry in Children with Down Syndrome (다운증후군 아동들의 보행 비대칭성 연구)

  • Lim, Bee-Oh;Han, Dong-Ki;Seo, Jung-Suk;Eun, Seon-Deok;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A large interindividual variability and some abnormally kinematic patterns at the lower extremity were the main features of the gait in children with Down syndrome. The purposes of this study were to investigate the gait asymmetry and biomechanical difference between dominant leg and non dominant leg in children with Down syndrome. Seven boys with Down Syndrome(age: $120{\pm}0.9yrs$, weight $34.4{\pm}8.4kg$, leg length: $68.7{\pm}5.0cm$) participated in this study. A 10.0 m ${\times}$ 1.3 m walkway with a firm dark surface was built and used for data collection. Three-dimensional motion analyses were performed to obtain the joint angles and range of motions. The vertical ground reaction forces(%BW) and impulses($%BW{\cdot}s$) were measured by two force plates embedded in the walkway. Asymmetry indices between the legs were computed for all variables. After decision the dominant leg and the non dominant leg with max hip abduction angle, paired samples t-test was employed for selected kinematic and ground reaction force variables to analyze the differences between the dominant leg and the non dominant leg. The max hip abduction angle during the swing phase showed most asymmetry, while the knee flexion angle at initial contact showed most symmetry in walking and running. The dominant leg showed more excessive abduction of hip in the swing phase and more flat-footed contact than the non dominant leg. Vertical peak force in running showed more larger than those of in walking, however, vertical impulse showed more small than walking due to decrease of support time. In conclusion, the foot of dominant leg contact more carefully than those of non dominant leg. And also, there are no significant difference between the dominant leg and the non dominant leg in kinematic variables and ground reaction force due to large interindividual variability.

Effect of dimensionless number and analysis of gait pattern by gender -spatiotemporal variables- (보행 분석시 Dimensionless number의 효과 및 성별간 보행패턴 분석 -시공간변인-)

  • Lee, Hyun-Seob
    • 한국체육학회지인문사회과학편
    • /
    • v.53 no.5
    • /
    • pp.521-531
    • /
    • 2014
  • The purposes of this study were to evaluate the effect of normalization by dimensionless number of Hof(1996) and to analysis the gait pattern for 20s Korean males and females. Subjects are selected in accordance with classification system of Korean standard body figure and age. Experimental equipment is the Motion capture system. Subjects who are walked at a self-selected normal walking speed were photographed using the Motion capture system and analyzed using 3D motion analysis method with OrthoTrak, Cortex, Matlab and SPSS for a statistical test. When used to normalize data, there are no differences of statistical significances between gender in all spatiotemporal variables. I concluded that gait research for mutual comparison requires a normalization by dimensionless number to eliminate the effects of the body size and to accurate statistical analysis.

The Influence of Auditory-Feedback Device Using Wearable Air-Pressure Insole on Spatiotemporal Gait Symmetry in Chronic Hemplegia

  • Heo, Ji-Hun;Song, Changho;Jung, Sangwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.311-319
    • /
    • 2021
  • Objective: To investigate the effect of emphasized initial contact by using a wearable air-pressure insole to provide auditory-feedback with variations of maximum peak pressure (MPP) of the affected side on spatiotemporal gait parameters and gait symmetry of stroke patients Design: A cross-sectional study Methods: Eighteen stroke patients participated in this study. All subjects walked five trials using an air-pressure insole that provides auditory feedback with different thresholds set on the insole. First, subjects walked without any auditory feedback. Then, the MPP threshold on the affected side was set from 70% and increase threshold by 10% after each trial until 100%. They walked three times or more on the gait analyzer for each trial, and the average values were measured. Before starting the experiment, subjects measured body weight, initial gait abilities and affected side MPP without auditory feedback. Results: Temporal and spatial variables were significantly increased in trials with auditory feedback from air-pressure insole except for non-paralyzed single support time and spatial gait symmetry compared to trials without auditory feedback(p<0.05). Among the four different thresholds, the walking speed, unaffected side single support time, affected and unaffected side stride, and affected side step length were greatest at 80% threshold of maximum peak, while affected single support time, temporal gait symmetry, and unaffected step length were greatest at the maximum peak of 100% threshold. Conclusions: These results indicate that auditory feedback gait using air-pressure insoles can be an effective way to improve walking speed, single support time, step length, stride, and temporal gait symmetry in stroke patients.

Gait Characteristics of Sasang Constitution with 3-Axis Accelerometer-Based Gait Analysis (3축 가속도계를 이용한 사상체질별 보행특성 연구)

  • Lee, Dongkyu;Jeong, Seoyoon;Kim, Lakhyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.31 no.4
    • /
    • pp.225-233
    • /
    • 2020
  • Objectives: This study aimed to reveal the gait characteristics of each Sasang constitution by examining the differences in gait analysis indicators using a 3-axis accelerometer. Methods: Ninety-one participants were classified through the TS-QSCD (Two-Step Questionnaire for Sasang Constitution Diagnosis) method and gait analysis was performed using a 3-Axis Accelerometer (G-WALK. BTS Bioengineering, Italy). Gait analysis in returning to the 6-meter turnaround point and 6-minute walking test were performed. The differences in the gait analysis index values were analyzed between each constitution. Results: The gait analysis of 91 subjects (37 Taeumin, 37 Soyangin, and 17 Soeumin), showed that the percent stride length/height in the Soyangin subjects was significantly higher than that of the Taeeumin and Soeuminin subjects in the spatiotemporal walking variables (p<0.05). Stride length also showed the widest tendency in the Soyangin subjects (p=0.05). In the kinesiological analysis, the range of pelvic obliquity angles in the Soeumin subjects was significantly wider than that of the Taeumin and Soyangin subjects (p<0.05). In the six-minute walking test, the Soyangin subjects walked the farthest at 309.41±35.23 m (p=0.064). Conclusions: In a comparison of the gait characteristics for each Sasang constitution using a three-dimensional accelerometer, the stride width of the Soyangin subjects was the widest compared to the Taeeumin, and Soeumin subjects, and Soyangin's walking speed showed a faster tendency than that of the Taeeumin and Soeumin subjects.

Effects of Inclined-treadmill Walking Training with Rhythmic Auditory Stimulation on Balance and Gait in Stroke Patients (리듬청각자극을 동반한 경사 트레드밀 보행 훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향)

  • Yoon, Sung-Kyeung;Lee, Young-Min
    • PNF and Movement
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2017
  • Purpose: This study aimed to determine how inclined-treadmill walking training with rhythmic auditory stimulation affects balance and gait in stroke patients. Methods: Ten chronic stroke patients, admitted to B hospital in Gangwon-do between August and October 2015, were trained 5 times per week for 4 weeks; each session lasted 30 minutes. To assess balance and gait before and after the training, the timed up and go (TUG) test, Berg balance scale (BBS), six minute walking test (6MWT), and three-dimensional spatiotemporal gait ability were used to measure the relevant variables. The data were analyzed using the paired t-test, and the statistical significance level was 0.05. Results: There were significant differences in the TUG, BBS, 6MWT, gait speed, cadence, single limb support (SLS), and symmetric index (SI) before and after training (p < 0.05). Conclusion: The results showed that the inclined-treadmill walking training with rhythmic auditory stimulation was effective at improving the balance and walking ability of stroke patients. Hearing training, using one of the basic procedures of proprioceptive neuromuscular stimulation, is considered to be an important aspect.

Effects of Ankle Self-Mobilization with Movement Intervention on Ankle Dorsiflexion Passive Range of Motion, Timed Up and Go Test, and Dynamic Gait Index in Patients with Chronic Stroke

  • Park, Donghwan
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.257-262
    • /
    • 2021
  • Objective: Patients with stroke generally diminished ankle range of motion, which decreases balance and walking ability. This study aimed to determine the effect of ankle self-mobilization with movement (s-MWM) on ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index in patients with chronic stroke. Design: Randomized controlled trial design Methods: Twenty-four post-stroke patients participated in this study. The participants were randomized into the control (n = 12) and self-MWM groups (n = 12). Both groups attended standard rehabilitation therapy for 30 minutes per session. In addition, self-MWM group was performed 3 times per week for 8 weeks. All participants have measured ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index in before and after the intervention. Results: After 8 weeks of training, self-MWM group showed greater improvement in ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index than in the control group (p<0.05). Further, self-MWM group had significantly improvement in all dependent variables compared to the pre-test (p<0.05). Conclusions: Our investigation demonstrates that self-MWM is beneficial for improving functional ability. Also, self-MWM was superior to control with respect to improving ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index.

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

Compensatory Strategy Observed in the Simulated Crouch Gait of Healthy Adults (정상인에서 쭈그림보행 시뮬레이션 시 관찰된 보상적 전략)

  • Kim, Tack-Hoon;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Kwon, Hyuk-Cheol;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.53-67
    • /
    • 2004
  • This simulation study investigated the characteristics of normal gait, $30^{\circ}$ crouch gait, $30^{\circ}$ crouch/equinus gait, $45^{\circ}$ crouch gait, $45^{\circ}$ crouch/equinus gait. The knee flexion angles were restricted using a specially designed orthosis. This study was carried out in a motion analysis laboratory of the National Rehabilitation Center. Fifteen healthy male subjects were recruited for the study. The purposes of this study were (1) to compare spatiotemporal parameters, kinematics, and kinetic variables in the sagittal plane among the different gait, (2) to investigate the secondary compensatory strategy, and (3) to suggest biomechanical physical therapy treatment methods. The pattern and magnitude observed in each condition were similar to those of normal gait, except the peak knee extension moment of the unrestricted ankle motion-crouch gait. However, the speed of the $45^{\circ}$ crouch gait was half that of a normal gait. The ankle joint moment in the crouch/equinus gait showed the double-bump pattern commonly observed in children with spastic cerebral palsy, and there was no significant difference in gait speed as compared with normal gait. The peak ankle plantar-flexor moment and ankle power generated during the terminal stance in the crouch/equinus conditions were reduced as compared with normal and $45^{\circ}$ crouch gaits (p<.05). The crouch/equinus gait at the ankle joint was an effective compensatory mechanism. Since ankle plantarflexion contracture can be exacerbated secondary to the ankle compensatory strategy in the crouch/equinus gait, it is necessary to increase the range of ankle dorsiflexion and the strength of plantarflexion simultaneously to decrease the abnormal biomechanical advantages of the ankle joint.

  • PDF

The Effects of Muscle, Balance and Walking Training on Gait Kinematics in Children with Down Syndrome (근력, 평형성, 보행 동작훈련이 다운증후군 아동의 보행에 미치는 효과)

  • Lim, Bee-Oh;Kim, Kye-Wan;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2009
  • The purpose of this study were to investigate the effects of muscle, balance and walking training on muscle, balance and gait kinematics in children with Down syndrome. Nine children ($9{\sim}12$ years old) with Down syndrome participated in this study. The participant with Down syndrome participated in muscle, balance and walking training for 12 weeks, three times a week Kinematic variables of gait were measured 3-dimentional motion capture system. The results indicated that the pelvis rotation decreased, the knee and hip flexion increased, decreased leg sway during the swing phase, the cadence increased, and the stride length decreased after the muscle, balance and walking training. In conclusion, Down syndrome's gait kinematic variables improved after the muscle, balance and walking training.

Comparision of Muscle Strength and Gait Ability between Hemodialysis Patients and Healthy adults (혈액투석 환자와 건강인의 근력과 보행능력의 비교)

  • Park, Keun-Sook;Choi, Soon-Hee;Park, Min-Jung
    • Journal of Korean Public Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Purpose: This study was conducted in order to compare muscle strength and gait ability of hemodialysis patients with those of healthy adults. Methods: Data were collected through a questionnaire, by testing of muscle strength and gait ability of 40 hemodialysis patients and 40 healthy adults. $X^2$-test, t-test, and ANCOVA were used in performance of data analysis. Results: First, variables including of occupation ( $X^2$=22.40,p<.001), body weight (t=-3.72, p<.001), and BMI ( $X^2$=14.65, p<.001) differed significantly between patients in the hemodialysis group and subjects in the healthy adult group. Second, using ANCOVA analysis with correction for related variables, such as occupation, body weight, and BMI as covariates, numbers for lift/reach (F=8.15, p<.001) and sit-to-stand (F=5.47, p=.001), and both maximum safe speed (F=9.17, p<.001) and normal comfortable speed (F=8.89, p<.001) were significantly lower for patients in the hemodialysis, compared with subjects in the healthy adult group. Conclusion: According to the results, muscle strength and gait ability of patients in the hemodialysis group were lower than those of subjects inthe healthy adult group. These findings suggest the importance and necessity for an interventional exercise and rehabilitation program for hemodialysis patients.