• Title/Summary/Keyword: GABA receptor

Search Result 143, Processing Time 0.025 seconds

Resveratrol Inhibits $GABA_C$ ${\rho}$ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Choi, Sun-Hye;Hwang, Sung-Hee;Kim, Hyeon-Joong;Lee, Joon-Hee;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2013
  • Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-$HT_{3A}$ receptors. The ${\gamma}$-aminobutyric $acid_C$($GABA_C$) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric $GABA_C$ receptor expressed in Xenopus oocytes injected with cRNA encoding human $GABA_C$ ${\rho}$ subunits. Our data show that the application of GABA elicits an inward peak current ($I_{GABA}$) in oocytes that express the $GABA_C$ receptor. Resveratrol treatment had no effect on oocytes injected with $H_2O$ or with $GABA_C$ receptor cRNA. Co-treatment with resveratrol and GABA inhibited $I_{GABA}$ in oocytes with $GABA_C$ receptors. The inhibition of $I_{GABA}$ by resveratrol was in a reversible and concentration-dependent manner. The $IC_{50}$ of resveratrol was $28.9{\pm}2.8{\mu}M$ in oocytes expressing $GABA_C$ receptor. The inhibition of $I_{GABA}$ by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate $GABA_C$ receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.

Regional difference in spontaneous firing inhibition by GABAA and GABAB receptors in nigral dopamine neurons

  • Kim, Yumi;Jang, Jinyoung;Kim, Hyun Jin;Park, Myoung Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.721-729
    • /
    • 2018
  • GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both $GABA_A$ and $GABA_B$ receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either $GABA_A$ receptors or $GABA_B$ receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either $GABA_A$ or $GABA_B$ receptor equally suppressed spontaneous firing in the soma, whereas $GABA_B$ receptor inhibited spontaneous firing more strongly than $GABA_A$ receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.

Study on the Agonistic Effect of Chunmajeongal-tang Extract to the $GABA_A/benzodiazepine$ Receptor Complex (천마전헐탕의 $GABA_A/benzodiazepine$ 신경수용체(神經受容體) 효능활성(效能活性)에 관(關)한 연구(硏究))

  • Kim, Sung-Wook;Gong, Dae-Jong;An, Hyeon-Guk;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • Objective : This study was performed to investigate the agonistic activity of Chunmajeongal-tang extract to the $GABA_A/benzodiazepine$ receptor complex. Methods : Male mice and Sprague-Dawley rats were used for this experiment. Chunmajeongal-tang Prescription was extracted with 80% methanol, evaporated in vacuo and dried with freeze dryer. The agonistic activity to the GABA/ benzodiazepine receptor complex and GABA transaminase activity were measured in vitro. Results : Chunmajeongal-tang extract inhibited dose-dependently the binding of [3H]Ro15-1788, an antagonist on GABA/benzodiazepine receptor complex, in rat cerebral cortices, showing $82.4{\pm}4.12%$ inhibition at a dose of 5.0 mg/kg. This extract inhibited dose-dependently the binding of [3H]flunitrazepam, an agonist on GABA/benzodiazepine receptor complex, in rat cerebral cortices, showing $5.6{\pm}1.24%$ inhibition. Furthermore, Chunmajeongal-tang extract inhibited the binding of [3H]flunitrazepam in the presence of GABA/NaCI with $13.2{\pm}0.44%$ inhibition, its inhibitory effect exhibited a positive GABA shift, which means that this extract activates a GABAergic neurotransmission.

  • PDF

Regulation of $GABA_A$ Receptor by Protein Kinase A in Sympathetic Neurons of Major Pelvic Ganglia

  • Kim Dae-Ran
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 2006
  • Major pelvic ganglia (MPG) in rats are an unique autonomic ganglia, containing both sympathetic and parasympathetic neurons related with the function of bladder, penis and bowel. It has been widely known that ionotropic $GABA_A$ receptors are the molecular target of $\gamma$-aminobutric acid (GABA), a major inhibitory neurotransmitter in central nervous system. However, their functions and regulations of $GABA_A$ receptors expressed in autonomic ganglia have been poorly understood. 1 examined the modulatory role of adenylyl cyclase (AC) and protein kinase A(PKA) on $GABA_A$-induced inward currents in the neurons of rat MPG. $GABA_A$ receptors were identified using immunofluorescent labeling in the rat major pelvic ganglion. Electrophysiological experiments were performed to record the activities of $GABA_A$ receptors. $GABA_A$ receptors were expressed only in sympathetic neurons. GABA induced marked inward currents in a concentration-dependent manner. Mucimol ($5{\mu}M$), a $GABA_A$ receptor agonist induced inward currents were significantly reduced in the presence of SQ 225361 $20{\mu}M$, a AC inhibitor and myristoylated PKA inhibitor 100 nM. In addition, forskolin ($1{\mu}M$), AC activator, augmented the GABA induced currents. The activation of AC/PKA-dependent pathway could involve in the regulation $GABA_A$ receptors, expressed only in sympathetic neurons of rat MPG. These findings are helpful for the better understanding the function of various pelvic organs innervated by MPG.

  • PDF

Anxiety and GABA System (불안과 GABA 체계)

  • Yang, Jong-Chul
    • Anxiety and mood
    • /
    • v.2 no.2
    • /
    • pp.79-85
    • /
    • 2006
  • Anxiety and anxiety disorders are related to many neurotransmitters, such as norepinephrine, serotonine, dopamine, glutamate, and Gamma-aminobutyric acid (GABA). GABA, the main inhibitory neurotransmitter of the CNS, is known to counterbalance the action of the excitatory neurotransmitters and control anxiety. GABA acts on 3 GABA receptor subtypes, $GABA_A$, $GABA_B$, and $GABA_C$. $GABA_A$ and $GABA_c$ receptors are oligomeric transmembrane glycoproteins composed of 5 subunits that are arranged around a central chloride channel. $GABA_B$ receptor comprises two 7-transmembraneis-spanning proteins that are coupled to either calcium or potassium channel via G proteins. This article highlights neurobiological interactions between anxiety and GABA system.

  • PDF

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

High mRNA expression of GABA receptors in human sperm with oligoasthenoteratozoospermia and teratozoospermia and its association with sperm parameters and intracytoplasmic sperm injection outcomes

  • Kaewman, Paweena;Nudmamud-Thanoi, Sutisa;Amatyakul, Patcharada;Thanoi, Samur
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • Objective: This study investigated the mRNA expression of gamma-aminobutyric acid (GABA) receptors in the sperm of oligoasthenoteratozoospermic (OAT) and teratozoospermic (TER) men compared to normozoospermic (NOR) men, as well as the relationships between GABA receptor expression and sperm parameters, fertilization rate, and embryo quality. Methods: The mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm was examined using reverse transcription-polymerase chain reaction in three groups of patients: NOR (n=32), OAT (n=22), and TER (n=45). The fertilization rate and embryo quality were assessed in 35 patients undergoing intracytoplasmic sperm injection (ICSI; 10 NOR, 10 OAT, and 15 TER men). Results: OAT men had significantly higher mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm than NOR men; however, the difference between TER and NOR men was not significant. High levels of these receptors were significantly correlated with low sperm concentration, motility, and morphology, as well as the rate of good-quality embryos (GQEs) at the cleavage stage after ICSI. Patients whose female partners had a >50% GQE rate at the cleavage stage had significantly lower levels of GABA A-α1 receptor expression than those whose partners had a ≤50% GQE rate. Conclusion: Our findings indicate that mRNA levels of GABA receptors in human sperm are correlated with poor sperm quality and associated with embryo development after ICSI treatment. The GABA A-α1 receptor in sperm has a stronger relationship with embryo quality at the cleavage stage than the GABA B-R2 receptor.

Modulation of Ligand Binding to the GABA-benzodiazepine Receptor Complex by Gastrodia elata Blume (천마의 GABA-benzodiazepine 수용체 복합체에 대한 조절작용)

  • Ha, Jeoung-Hee;Lee, Dong-Ung;Eah, Kyung-Yoon;Hah, Jung-Sang;Kim, Hyun-Ju;Yong, Chul-Soon;Huh, Keon
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.325-330
    • /
    • 1997
  • Methanol extract of G. elata inhibited the binding of [/sup 3/H]Rol5-1788, a selective benzodiazepine receptor antagonest, to benzodiazepine receptor of rat cortices. Saturation experiments followed by Scatchard analysis of the results showed that the inhibition of [sub 3/H]Ro15-1788 binding by G. dlata. appeared to be com-petitive. These competitive inhibiton of the butanol fraction was observed to be higher than the methanol extract. Methanol extract of G. efara inhibited a [sub 3/H]flunitrazepam, a selective benzodiazepine receptor agonist, binding to benzodiazepine receptor. GABA significantly enhanced the inhibition of [/sub 3/H]flunitrazepam binding by G. elata, and these "positive GABA shift" supported the strong possibility of agonestic activity to benzodiazepine receptor Butanol fraction was observed to be higher than crude extract by methanol in an agonistic activity to benzodiazepine receptor, furthermore enhanced the binding of [sub 3/H]SR95531 to GABA receptor. Butanol fraction of G. elata significantly diminished the pentylenetetrazole-induced lethality of mice. From these results, it can be concluded that substance or substances with neurochemical properties characteri- stic of a benzodiazepine receptor agonist may be important components, and contribute to the anticonvulsant property of G. elata.

  • PDF

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Intraocular Injection of Muscimol Induces Illusory Motion Reversal in Goldfish

  • Lee, Sang-Yoon;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.469-473
    • /
    • 2009
  • Induced activation of the gamma-aminobutyric $acid_A$ ($GABA_A$) receptor in the retina of goldfish caused the fish to rotate in the opposite direction to that of the spinning pattern during an optomotor response (OMR) measurement. Muscimol, a $GABA_A$ receptor agonist, modified OMR in a concentration-dependent manner. The $GABA_B$ receptor agonist baclofen and $GABA_C$ receptor agonist CACA did not affect OMR. The observed modifications in OMR included decreased anterograde rotation $(0.01\sim0.03\;{\mu}M)$, coexistence of retrograde rotation and decreased anterograde rotation $(0.1\sim30\;{\mu}M)$ and only retrograde rotation $(100\;{\mu}M\sim1\;mM)$. In contrast, the $GABA_A$ receptor antagonist bicuculline blocked muscimol-induced retrograde rotation. Based on these results, we inferred that the coding inducing retrograde movement of the goldfish retina is essentially associated with the GABAA receptor-related visual pathway. Furthermore, from our novel approach using observations of goldfish behavior the induced discrete snapshot duration was approximately 573 ms when the fish were under the influence of muscimol.