• 제목/요약/키워드: GA-based optimization

검색결과 422건 처리시간 0.024초

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.

Simple Bacteria Cooperative Optimization with Rank Replacement

  • 정성훈
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.432-436
    • /
    • 2009
  • We have developed a new optimization algorithm termed simple bacteria cooperative optimization (sBCO) based on bacteria behavior patterns [1]. In [1], we have introduced the algorithm with basic operations and showed its feasibility with some function optimization problems. Since the sBCO was the first version with only basic operations, its performance was not so good. In this paper, we adopt a new operation, rank replacement, to the sBCO for improving its performance and compare its results to those of the simple genetic algorithm (sGA) which has been well known and widely used as an optimization algorithm. It was found from the experiments with four function optimization problems that the sBCO with rank replacement was superior to the sGA. This shows that our algorithm can be a good optimization algorithm.

Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Sagiroglu, Merve;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.221-231
    • /
    • 2019
  • This paper performs for the first time a simultaneous optimization for members sections along with semi-rigid beam-to-column connections for space steel frames with fixed, semi-rigid, and hinged bases using a biogeography-based optimization algorithm (BBO) and a genetic algorithm (GA). Furthermore, a member's sections optimization for a fully fixed space frame is carried out. A real and accurate simulation of semi-rigid connection behavior is considered in this study, where the semi-rigid base connections are simulated using Kanvinde and Grilli (2012) nonlinear model, which considers deformations in different base connection components under the applied loads, while beam-to-column connections are modeled using the familiar Frye and Morris (1975) nonlinear polynomial model. Moreover, the $P-{\Delta}$ effect and geometric nonlinearity are considered. AISC-LRFD (2016) specification constraints of the stress and displacement are considered as well as section size fitting constraints. The optimization is applied to two benchmark space frame examples to inspect the effect of semi-rigidity on frame weight and drift using BBO and GA algorithms.

Optimal Design for A Heteropolar Magnetic Bearing Considering Nonlinearities

  • Kim, Chaesil;Lee, Jaewhoan;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2002
  • Although the design of magnetic bearing needs a systematic optimization due to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present designs for magnetic bearings have been conducted in the linear region of the characteristics for magnetic materials by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional nonlinear finite element magnetic field analysis for the design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

비선형이 고려된 이극성 자기베어링의 최적설계 (Optimal Design for a Heteropolar Magnetic Bearing Considering Nonlinearities)

  • 김재실;이재환;박종권
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.53-58
    • /
    • 1999
  • Although the design of magnetic bearing needs a systematic optimization du e to several design variables, constraints, geometric limitations, nonlinearities, and so on, the present for magnetic bearings have been conducted in the linear region of the characteristics for magnetic by trial and error considering design constraints. This article, therefore, provides the possibility of a genetic algorithm(GA) based optimization with two dimensional-nonlinear finite element magnetic field analysis for design of a radial heteropolar magnetic bearing. The magnetic bearing design by GA based optimization makes good agreements with that by a commercial optimization software DOT using the sensitivity analysis.

  • PDF

A Method of Genetic Algorithm Based Multiobjective Optimization via Cooperative Coevolution

  • Lee, Jong-Soo;Kim, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2115-2123
    • /
    • 2006
  • The paper deals with the identification of Pareto optimal solutions using GA based coevolution in the context of multiobjective optimization. Coevolution is a genetic process by which several species work with different types of individuals in parallel. The concept of cooperative coevolution is adopted to compensate for each of single objective optimal solutions during genetic evolution. The present study explores the GA based coevolution, and develops prescribed and adaptive scheduling schemes to reflect design characteristics among single objective optimization. In the paper, non-dominated Pareto optimal solutions are obtained by controlling scheduling schemes and comparing each of single objective optimal solutions. The proposed strategies are subsequently applied to a three-bar planar truss design and an energy preserving flywheel design to support proposed strategies.

구조최적화를 위한 병렬유전자 알고리즘 (Parallel Genetic Algorithm for Structural Optimization on a Cluster of Personal Computers)

  • 이준호;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.40-47
    • /
    • 2000
  • One of the drawbacks of GA-based structural optimization is that the fitness evaluation of a population of hundreds of individuals requiring hundreds of structural analyses at each CA generation is computational too expensive. Therefore, a parallel genetic algorithm is developed for structural optimization on a cluster of personal computers in this paper. Based on the parallel genetic algorithm, a population at every generation is partitioned into a number of sub-populations equal to the number of slave computers. Parallelism is exploited at sub-population level by allocationg each sub-population to a slave computer. Thus, fitness of a population at each generation can be concurrently evaluated on a cluster of personal computers. For implementation of the algorithm a virtual distributed computing system in a collection of personal computers connected via a 100 Mb/s Ethernet LAN. The algorithm is applied to the minimum weight design of a steel structure. The results show that the computational time requied for serial GA-based structural optimization process is drastically reduced.

  • PDF

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

Comparison of Three Evolutionary Algorithms: GA, PSO, and DE

  • Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • 제11권3호
    • /
    • pp.215-223
    • /
    • 2012
  • This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight the common computational procedures. The general observations on the similarities and differences among the three algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode resource constrained project scheduling problems.

Particle Swarm Optimization을 이용한 공기-비용 절충관계 최적화 모델에 관한 연구 (A Study on Optimization Model of Time-Cost Trade-off Analysisusing Particle Swarm Optimization)

  • 박우열;안성훈
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.91-98
    • /
    • 2008
  • It is time-consuming and difficulty to solve the time-cost trade-off problems, as there are trade-offs between time and cost to complete the activities in construction projects and this problems do not have unique solutions. Typically, heuristic methods, mathematical models and GA models has been used to solve this problems. As heuristic methods and mathematical models are have weakness in solving the time-cost trade-off problems, GA based model has been studied widely in recent. This paper suggests the time-cost trade-off optimization algorithm using particle swarm optimization. The traditional particle swarm optimization model is modified to generate optimal tradeoffs among construction time and cost efficiently. An application example is analyzed to illustrate the use of the suggested algorithm and demonstrate its capabilities in generating optimal tradeoffs among construction time and cost. Future applications of the model are suggested in the conclusion.