• Title/Summary/Keyword: GA-based optimization

Search Result 426, Processing Time 0.025 seconds

Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit

  • Wang, Yi;Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Li, Hui;Xiao, Jinyu;Wang, Zhidong;Shi, Rui;Wang, Shuai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1930-1939
    • /
    • 2015
  • Wind power planning aims to locate and size wind farms optimally. Traditionally, wind power planners tend to choose the wind farms with the richest wind resources to maximize the energy benefit. However, the capacity benefit of wind power should also be considered in large-scale clustered wind farm planning because the correlation among the wind farms exerts an obvious influence on the capacity benefit brought about by the combined wind power. This paper proposes a planning model considering both the energy and the capacity benefit of the wind farms. The capacity benefit is evaluated by the wind power capacity credit. The Ordinal Optimization (OO) Theory, capable of handling problems with non-analytical forms, is applied to address the model. To verify the feasibility and advantages of the model, the proposed model is compared with a widely used genetic algorithm (GA) via a modified IEEE RTS-79 system and the real world case of Ningxia, China. The results show that the diversity of the wind farm enhances the capacity credit of wind power.

Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology

  • Cho, Seong-Jae;Sun, Min-Chul;Kim, Ga-Ram;Kamins, Theodore I.;Park, Byung-Gook;Harris, James S. Jr.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • In this work, a tunneling field-effect transistor (TFET) based on heterojunctions of compound and Group IV semiconductors is introduced and simulated. TFETs based on either silicon or compound semiconductors have been intensively researched due to their merits of robustness against short channel effects (SCEs) and excellent subthreshold swing (SS) characteristics. However, silicon TFETs have the drawback of low on-current and compound ones are difficult to integrate with silicon CMOS circuits. In order to combine the high tunneling efficiency of narrow bandgap material TFETs and the high mobility of III-V TFETs, a Type-I heterojunction tunneling field-effect transistor (I-HTFET) adopting $Ge-Al_xGa_{1-x}As-Ge$ system has been optimized by simulation in terms of aluminum (Al) composition. To maximize device performance, we considered a nanowire structure, and it was shown that high performance (HP) logic technology can be achieved by the proposed device. The optimum Al composition turned out to be around 20% (x=0.2).

Genetic Algorithm based Resource Management for Cognitive Mesh Networks with Real-time and Non-real-time Services

  • Shan, Hangguan;Ye, Ziyun;Bi, Yuanguo;Huang, Aiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2774-2796
    • /
    • 2015
  • Quality-of-service (QoS) provisioning for a cognitive mesh network (CMN) with heterogeneous services has become a challenging area of research in recent days. Considering both real-time (RT) and non-real-time (NRT) traffic in a multihop CMN, [1] studied cross-layer resource management, including joint access control, route selection, and resource allocation. Due to the complexity of the formulated resource allocation problems, which are mixed-integer non-linear programming, a low-complexity yet efficient algorithm was proposed there to approximately solve the formulated optimization problems. In contrast, in this work, we present an application of genetic algorithm (GA) to re-address the hard resource allocation problems studied in [1]. Novel initialization, selection, crossover, and mutation operations are designed such that solutions with enough randomness can be generated and converge with as less number of attempts as possible, thus improving the efficiency of the algorithm effectively. Simulation results show the effectiveness of the newly proposed GA-based algorithm. Furthermore, by comparing the performance of the newly proposed algorithm with the one proposed in [1], more insights have been obtained in terms of the tradeoff among QoS provisioning for RT traffic, throughput maximization for NRT traffic, and time complexity of an algorithm for resource allocation in a multihop network such as CMN.

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool (비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구)

  • Lulu, Addis;Park, Myeongnam;Kim, Hyunseung;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

Prediction of Wind Power by Chaos and BP Artificial Neural Networks Approach Based on Genetic Algorithm

  • Huang, Dai-Zheng;Gong, Ren-Xi;Gong, Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).

Development of Wastewater Treatment Process Simulators Based on Artificial Neural Network and Mass Balance Models (인공신경망 및 물질수지 모델을 활용한 하수처리 프로세스 시뮬레이터 구축)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.427-436
    • /
    • 2015
  • Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Estimation of Nonlinear Adsorption Isotherms and Advection-Dispersion Model Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 흡착 식 및 이류-확산 모델 파라미터 추정)

  • Do, Nam-Young;Lee, Seung-Rae;Park, Hyun-Il
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • In this study, estimation of nonlinear adsorption isotherms(Langmuir & Freundlich adsorption isotherm) and advection-dispersion model parameters was conducted using genetic algorithm(GA) for Zn and Cd adsorption. Estimated parameters of nonlinear adsorption isotherms, which were obtained from the optimization process using genetic algorithm(GA), are nearly same with the parameters obtained from a linearization process of the nonlinear isotherms. Estimated effective diffusion coefficients, which were obtained from a finite element analysis of the advection-dispersion model and an optimization procedure using the genetic algorithm, for the metals were approximately in the order of $10^{-7}cm^2/s$ which could be obtained based on the linear distribution coefficient. The effective diffusion coefficients based on the nonlinear retardation factors were in the range of $10^{-6}{\sim}10^{-5}cm^2/s$. As a result, the correlation coefficient obtained between the measured and calculated concentration was over 0.9 which means that the genetic algorithm should be successfully applied to estimate the unknown parameters of the nonlinear adsorption isotherms and advection-dispersion model.

  • PDF

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

A Cellular Learning Strategy for Local Search in Hybrid Genetic Algorithms (복합 유전자 알고리즘에서의 국부 탐색을 위한 셀룰러 학습 전략)

  • Ko, Myung-Sook;Gil, Joon-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.669-680
    • /
    • 2001
  • Genetic Algorithms are optimization algorithm that mimics biological evolution to solve optimization problems. Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex fitness landscapes. Hybrid genetic algorithm that is combined with local search called learning can sustain the balance between exploration and exploitation. The genetic traits that each individual in the population learns through evolution are transferred back to the next generation, and when this learning is combined with genetic algorithm we can expect the improvement of the search speed. This paper proposes a genetic algorithm based Cellular Learning with accelerated learning capability for function optimization. Proposed Cellular Learning strategy is based on periodic and convergent behaviors in cellular automata, and on the theory of transmitting to offspring the knowledge and experience that organisms acquire in their lifetime. We compared the search efficiency of Cellular Learning strategy with those of Lamarckian and Baldwin Effect in hybrid genetic algorithm. We showed that the local improvement by cellular learning could enhance the global performance higher by evaluating their performance through the experiment of various test bed functions and also showed that proposed learning strategy could find out the better global optima than conventional method.

  • PDF