• Title/Summary/Keyword: G292 osteoblast-like cell

Search Result 2, Processing Time 0.018 seconds

Effect of Phorbol ester on $K^+$channel in an G292 osteoblast-like cell (G292 세포에서 $K^+$통로에 대한 phorbol ester의 효과)

  • Kim, Mi-Kyung;Park, Su-Byung
    • The korean journal of orthodontics
    • /
    • v.32 no.3 s.92
    • /
    • pp.227-234
    • /
    • 2002
  • In order to investigate the action mechanism of protein kinase C on $K^+$ channel in osteoblastic cell, effects of phorbol 12, 13-dibutyrate on human osteoblast-like cells (G292) were studied by patch clamp technique with cell-attacked configuration. 111 this experiment, 45pS ion channel was dominant in G292 cell line according to their approximate conductances in symmetrical 140mM KCl saline at holding potential of 60mV. In torrent-voltage relationship, reversal potential was 5.5mV at the condition of potassium enriched saline in the pipette and -27 mV at the condition of standard extracellular saline In the pipette. Phorbol 12, 13-dibutyrate 10nM increased the open probability of 45pS channel and staurosporine, an inhibitor of protein kinase C, suppressed this effect. Phorbol 12,13-dibutyrate moved the reversal potential of 45pS channel to more negative potential and increased the single channel current at the same membrame potential. In order to check the activation of protein kinase C in G292 cell by phorbol 12,13-dibutyrate, western blot of protein kinase C was performed. Phorbol 12,13-dibutyrate $0.1{\mu}M$ translocated protein kinase C from cellular compartment to membrane compartment of the cell. These findings suggest that phorbol 12,13-dibutyrate, one of phorbol esters, activate 45pS channel In G292 cell and affect cell membrane potential, that regulate cellular function.

Properties of stretch-activated $K^+$ channels in an G292 osteoblast-like cell (G292 세포에서 세포막 신장으로 활성화되는 $K^+$통로의 특성)

  • Lee, Sang-Gook;Jung, Dong-Keun;Suh, Duk-Joon;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.197-204
    • /
    • 2000
  • [$K^+$]-selective ion channels were studied in excised inside-out membrane patches from human osteoblast-like cells (G292). Three classes of $K^+$channels were present and could be distinguished on the basis of conductance. Conductances were $270\pm27\;pS,\;113\pm12\;pS,\;48\pm8\;pS$ according to their approximate conductances in symmetrical 140 mM KCl saline at holding potential of -80 mV It was found that the small conductance (48 pS) $K^+$channel activation was dependent on membrane voltage. In current-voltage relationship, small conductance $K^+$channel showed outward rectification, and it was activated by the positive potential inside the membrane. In recordings, single channel currents were activayed by a negative pressure outside the membrane. The membrane pressure increased $P_{open}$ of the $K^+$ channel in a pressure-dependent manner. In the excised-patch clamp recordings, G292 osteoblast-like cells have been shown to contain three types of $K^+$ channels. Only the small conductance (48 pS) $K^+$channel is sensitive to the membrane stretch. These findings suggest that a hyperpolarizing current, mediated in part by this channel, may be associated with early events during the mechanical loading of the osteoblast. In G292 osteoblast-like cells, $K^+$channel is sensitive to membrane tension, and may represent a unique adaptation of the bone cell membrane to mechanical stress.

  • PDF