• 제목/요약/키워드: G2 cell cycle arrest

검색결과 413건 처리시간 0.023초

Ethanol Elicits Inhibitory Effect on the Growth and Proliferation of Tongue Carcinoma Cells by Inducing Cell Cycle Arrest

  • Le, Thanh-Do;Do, Thi Anh Thu;Yu, Ri-Na;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.153-158
    • /
    • 2012
  • Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.

Overexpression of Cyclin L2 Inhibits Growth and Enhances Chemosensitivity in Human Gastric Cancer Cells

  • Li, Hong-Li;Huang, Ding-Zhi;Deng, Ting;Zhou, Li-Kun;Wang, Xia;Bai, Ming;Ba, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1425-1430
    • /
    • 2012
  • Cyclin L2 is a novel member of the cyclin family, recently implicated in the regulation of cell cycle progression and/or transcriptional regulation. The present study was undertaken to investigate the effects of overexpression on tumor cell growth and chemosensitivity in human gastric cells in vitro. Cyclin L2 was transfected into human gastric cancer cell line BCG823 and expressed with a mammalian expression vector pcDNA3.1. The effects and mechanisms of cyclin L2 on cell growth, cell cycling and apoptosis were studied. Compared to control vectors, overexpression of cyclin L2 inhibited the growth of BCG823 cells and enhance their chemosensitivity to fluorouracil, docetaxel and cisplatin. The anti-proliferative effects of cyclin L2 could be due to G0/G1 arrest and apoptosis. Cyclin L2 induced G0/G1 arrest and apoptosis involved upregulation of caspase-3 and down regulation Bcl-2 and survivin. The results indicated that overexpression of cyclin L2 protein may promote efficient growth inhibition and enhance chemosensitivity to chemotherapeutic agents in human gastric cancer cells by inducing G0/G1 cell cycle arrest and apoptosis.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • 제17권6호통권86호
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells (CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • 제26권9호
    • /
    • pp.1015-1021
    • /
    • 2016
  • 5-fluorouracil (5-FU), a pyrimidine analog, is a widely used anticancer drug, which works through irreversible inhibition of thymidylate synthase. In the present study, it was investigated the anti-proliferative effects and molecular mechanisms of 5-FU using Ewing's Sarcoma CHP-100 Cells. The present data indicated that treatment of 5-FU to CHP-100 cells induced a G1 phase arrest of the cell cycle in a time-dependent manner. 5-FU-induced G1 arrest was correlated with the accumulation of the hypophosphorylated form of the retinoblastoma protein (pRB) and association of pRB with the transcription factors E2F-1 and E2F-4. Although 5-FU treatment did affect the levels of cyclin-dependent kinases, the levels of cyclin A and B were markedly down-regulated as compared with the untreated control group. In addition, 5-FU-induced G1 arrest of CHP-100 cells was also associated with the induction of apoptosis, as determined by apoptotic cell morphologies, degradation of poly(ADP-ribose) polymerase and Annexin V staining. Furthermore, 5-FU induced the loss of mitochondrial membrane potential with up-regulated pro-apoptotic Bax expression, down-regulated anti-apoptotic Bcl-2 expression and cytochrome c release from mitochondria to cytosol. Collectively, the data suggest that 5-FU is effective in inducing cell growth reduction and apoptosis, in part, by reducing phosphorylation of pRB and activating mitochondrial dysfunction in CHP-100 cells.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제30권4호
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • Biomedical Science Letters
    • /
    • 제16권2호
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

Gamma-Irradiation and Doxorubicin Treatment of Normal Human Cells Cause Cell Cycle Arrest Via Different Pathways

  • Lee, Seong Min;Youn, BuHyun;Kim, Cha Soon;Kim, Chong Soon;Kang, ChulHee;Kim, Joon
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.331-338
    • /
    • 2005
  • Ionizing radiation and doxorubicin both produce oxidative damage and double-strand breaks in DNA. Double-strand breaks and oxidative damage are highly toxic and cause cell cycle arrest, provoking DNA repair and apoptosis in cancer cell lines. To investigate the response of normal human cells to agents causing oxidative damage, we monitored alterations in gene expression in F65 normal human fibroblasts. Treatment with ${\gamma}$-irradiation and doxorubicin altered the expression of 23 and 68 known genes, respectively, with no genes in common. Both agents altered the expression of genes involved in cell cycle arrest, and arrested the treated cells in $G_2M$ phase 12 h after treatment. 24 h after ${\gamma}$-irradiation, the percentage of $G_1$ cells increased, whereas after doxorubicin treatment the percentage of $G_2M$ cells remained constant for 24 h. Our results suggest that F65 cells respond differently to ${\gamma}$-irradiation- and doxorubicin-induced DNA damage, probably using entirely different biochemical pathways.

Pharmacodynamics of Antitumor Activity of Paclitaxel in Monolayers and Histocultures of Human NSCLC Cells

  • Park, Jong-Kook;Kim, Seong-Yun;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권5호
    • /
    • pp.361-367
    • /
    • 2005
  • In this study, we evaluated and compared the pharmacodynamics of paclitaxel (PTX) in human A549 NSCLC cells grown as monolayers or as three-dimensional histocultures. Growth inhibitory effects were determined after incubating cells in drug free medium until 96 hr post drug exposure initiation. Cell cycle arrest and apoptosis were measured by flow cytometry. The growth inhibition induced by PTX was significantly different in monolayers and histocultures, and PTX showed significantly less cytotoxicity in histocultures where large resistant fractions were observed. Moreover, although PIX induced significant $G_{2}/M$ arrest followed by apoptosis in monolayers in a drug concentration-dependant manner, $G_{2}/M$ arrest was not elicited in histocultures. However, apoptotic cells appeared from the $G_{2}/M$ phase in histocultures. In this study, we provide first evidence that PIX in three-dimensional histocultures, does not induce $G_{2}/M$ arrest, but rather that it induces $G_{2}/M$ phase specific apoptosis. Overall, our data demonstrate different pharmacodynamics of PTX in traditional monolayer and three-dimensional histocultures.

Inhibitory Effects of Luteolin Isolated from Ixeris sonchifolia Hance on the Proliferation of HepG2 Human Hepatocellular Carcinoma Cells

  • Yee, Su-Bog;Lee, Jung-Hwa;Chung, Hae-Young;Im, Kwang-Sik;Bae, Song-Ja;Choi, Jae-Soo;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • 제26권2호
    • /
    • pp.151-156
    • /
    • 2003
  • We investigated the anti-proliferative effects of luteolin and apigenin, isolated from Ixeris sonchifolia Hance, on HepG2 human hepatocellular carcinoma cells. In MTT assay luteolin showed more efficient anti-proliferative effects on cells than apigenin did. According to propidium iodide staining and flow cytometry studies, we postulated that these effects might be a result of cell cycle arrest. Hence we examined the changes of protein expressions related to cell cycle arrest. Western blotting data demonstrated that the down-regulated expression of CDK4 was correlated to the increase of p53 and CDK inhibitor $p21^{WAF1/CIP1}$ protein. These data suggest that luteolin may have potential as an anti-cancer agent.

Induction of G1 arrest and apoptosis mediated by a novel nucleoside analog, LJ-331 in human leukemia HL-60 cells

  • Lee, Eun-Jin;Shin, Dea-Hong;Jeong, Lak-Shin;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.86-86
    • /
    • 2003
  • In a continuous effort to develop novel anticancer agents we newly synthesized and evaluated the antitumor activity of nucleoside analogues. One analogue, 4 - [2-Chlor-6- (3-iodo- benzy lamino) -purin -9-yl]- 2,3-dihydroxy-cyclopentanecarbo xylic acid methylamide (LJ-331), has been shown to exert a potent inhibition of human cancer cell growth in vitro including human lung (A549), stomach (SNU-638) and leukemia (HL-60) cancer cells. Following mechanism of action study revealed that LJ - 331induces cell cycle arrest at the G1 phase in HL-60 cells and evokes apoptotic phenomena such as an increase in DNA ladder intensity and chromatin condensation by a dose- and time-dependent manner. LJ-331 also activated the caspase-3 activity in HL-60. This result suggests that the growth inhibition of human cancer cells by LJ-331 might be related to the cell cycle arrest and induction of apoptosis.

  • PDF