• Title/Summary/Keyword: G2 arrest

Search Result 506, Processing Time 0.029 seconds

Inhibition of Adipocyte Differentiation through G1 Arrest by Extract of Sophora tonkinensis Gapnep in 3T3-L1 Preadipocytes (산두근 추출물의 세포주기 정지를 통한 3T3-L1 지방전구세포의 분화 억제)

  • Jeong, Hyun-Young;Hyun, Sook-Kyung;Choi, Yung-Hyun;Kim, Byung-Woo;Kwon, Hyun-Ju
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1346-1353
    • /
    • 2011
  • Sophora tonkinensis Gapnep has been used as a traditional herbal medicine in oriental regions since ancient times. In this study, the effect and mechanism of the MeOH extract of Sophora tonkinensis Gapnep (STME) on adipocite differentiation and adipogenesis in 3T3-L1 preadipocites were investigated. Treatment with STME in the concentration range of 0-200 ${\mu}g$/ml significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner, as determined by a decrease in intracellular lipid droplets and lipid contents measured by Oil Red O staining. In association with the inhibitory effect of lipid accumulation, the expressions of the proteins concerned with adipogenesis in 3T3-L1 preadipocites were also investigated. Treatment with STME reduced the expressions of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ and ${\beta}$ (C/EBP${\alpha}$ and C/EBP${\beta}$) and sterol regulatory element binding protein (SREBP), which are adipocyte specific markers. In flow cytometry analysis, the inhibitory effect of differentiation was caused by G1 arrest and following mitotic clonal expansion cease. Therefore, we also investigated the alteration of G1 phase arrest-related proteins. As a result, the expression of p21 protein was significantly increased, while the expressions of Cdk2, E2F-1 and phospho-Rb were reduced in a dose-dependent manner in STME treated 3T3-L1 cells. According to these results, STME might inhibit differentiation through G1 arrest in 3T3-L1 preadipocytes adipogenesis, and further studies, which are in progress, have to be completed to identify the active compounds.

Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines

  • Kustiawan, Paula M;Phuwapraisirisan, Preecha;Puthong, Songchan;Palaga, Tanapat;Arung, Enos T;Chanchao, Chanpen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6581-6589
    • /
    • 2015
  • Background: Previously, stingless bee (Trigona spp.) products from East Kalimantan, Indonesia, were successfully screened for in vitro antiproliferative activity against human cancer derived cell lines. It was established that propolis from T. incisa presented the highest in vitro cytotoxicity against the SW620 colon cancer cell line (6% cell survival in $20{\mu}g/mL$). Materials and Methods: Propolis from T. incisa was extracted with methanol and further partitioned with n-hexane, ethyl acetate and methanol. The in vitro cytotoxicity of the extracts was assessed by the MTT assay against human colon (SW620), liver (Hep-G2), gastric (KATO-III), lung (Chago) and breast (BT474) cancer derived cell lines. The active fractions were further enriched by silica gel quick column, absorption and size exclusion chromatography. The purity of each fraction was checked by thin layer chromatography. Cytotoxicity in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by MTT assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells. Results: A cardol isomer was found to be the major compound in one active fraction (F45) of T. incisa propolis, with a cytotoxicity against the SW620 ($IC_{50}$ of $4.51{\pm}0.76{\mu}g/mL$), KATO-III (IC50 of $6.06{\pm}0.39{\mu}g/mL$), Hep-G2 ($IC_{50}$ of $0.71{\pm}0.22{\mu}g/mL$), Chago I ($IC_{50}$ of $0.81{\pm}0.18{\mu}g/mL$) and BT474 (IC50 of $4.28{\pm}0.14{\mu}g/mL$) cell lines. Early apoptosis (programmed cell death) of SW620 cells was induced by the cardol containing F45 fraction at the $IC_{50}$ and $IC_{80}$ concentrations, respectively, within 2-6 h of incubation. In addition, the F45 fraction induced cell cycle arrest at the G1 subphase. Conclusions: Indonesian stingless bee (T. incisa) propolis had moderately potent in vitro anticancer activity on human cancer derived cell lines. Cardol or 5-pentadecyl resorcinol was identified as a major active compound and induced apoptosis in SW620 cells in an early period (${\leq}6h$) and cell cycle arrest at the G1 subphase. Thus, cardol is a potential candidate for cancer chemotherapy.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.

Inhibition of Cell Cycle Progression and Induction of Apoptosis in HeLa Cells by HY558-1, a Novel CDK Inhibitor Isolated from Penicillium minioluteum F558

  • Lim, Hae-Young;Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.978-984
    • /
    • 2004
  • In the course of screening for a novel inhibitor of CDC2, HY558-1 was isolated from a culture broth of Penicillium minioluteum F558. Moreover, it was found that HY558-1 had an effect on both the cell cycle regulation and apoptosis of human cervical adenocarcinoma HeLa cells. A flow cytometric analysis of HeLa cells revealed appreciable cell cycle arrest at the G1 and G2/M phases following treatment with HY558-1. Furthermore, DNA fragmentation due to apoptosis was observed in HeLa cells treated with HY558-1. To obtain further information on the cell cycle arrest and apoptotic induction induced by HY558-1, the expression of certain cell cycle and apoptosis-associated proteins was examined using a Western blot analysis. The results revealed that HY558-1 inhibited the phosphorylation of pRb and decreased the expression levels of CDK2, CDC2, and cyclin A in the cell cycle progression. It was also shown that the level of $p21^{WAF1/CIP1}$ was increased in HeLa cells treated with 0.52 mM of HY558-1. Accordingly, HY558-1 was found to inhibit the proliferation of HeLa cells through the induction of G1 phase arrest by inhibiting pRb phosphorylation via an upregulation of $p21^{WAF1/CIP1}$, and G2/M phase arrest by directly inhibiting CDC2 and cyclin A. Moreover, HeLa cells treated with 0.52 mM of HY558-1 exhibited apoptotic induction associated with the cleavage of Bid and release of cytochrome c from mitochondria into the cytosol. Subsequent investigation of the activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) suggested that the mitochondrial pathway was primarily involved in the HY558-1-induced apoptosis in HeLa cells.

Involvement of G1 arrest and caspase-3 activation in apoptosis induced by bovine lactoferricin

  • Yoo, Yung-Choon;Lee, Kyung-Bok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.325.2-325.2
    • /
    • 2002
  • We investigated the effect of bovine lactoferricin (Lfcin-B) on cell cycle regulation and caspase activation in tumor cells. Treatment with Lfcin-B resulted in the production of intracellular reactive oxygen species (ROS) during apoptosis of THP-1 cells. Biochemical analysis revealed that Lfcin-B-induced apoptosis. the cell cycle arrest and caspase activation were completely abrogated by addition of an antioxidant such as N-acetylcysteine(NAC). (omitted)

  • PDF

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Picropodophyllotoxin Induces G1 Cell Cycle Arrest and Apoptosis in Human Colorectal Cancer Cells via ROS Generation and Activation of p38 MAPK Signaling Pathway

  • Lee, Seung-On;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Joo, Sang Hoon;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1615-1623
    • /
    • 2021
  • Picropodophyllotoxin (PPT), an epimer of podophyllotoxin, is derived from the roots of Podophyllum hexandrum and exerts various biological effects, including anti-proliferation activity. However, the effect of PPT on colorectal cancer cells and the associated cellular mechanisms have not been studied. In the present study, we explored the anticancer activity of PPT and its underlying mechanisms in HCT116 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to monitor cell viability. Flow cytometry was used to evaluate cell cycle distribution, the induction of apoptosis, the level of reactive oxygen species (ROS), assess the mitochondrial membrane potential (Δψm), and multi-caspase activity. Western blot assays were performed to detect the expression of cell cycle regulatory proteins, apoptosis-related proteins, and p38 MAPK (mitogen-activated protein kinase). We found that PPT induced apoptosis, cell cycle arrest at the G1 phase, and ROS in the HCT116 cell line. In addition, PPT enhanced the phosphorylation of p38 MAPK, which regulates apoptosis and PPT-induced apoptosis. The phosphorylation of p38 MAPK was inhibited by an antioxidant agent (N-acetyl-L-cysteine, NAC) and a p38 inhibitor (SB203580). PPT induced depolarization of the mitochondrial inner membrane and caspase-dependent apoptosis, which was attenuated by exposure to Z-VAD-FMK. Overall, these data indicate that PPT induced G1 arrest and apoptosis via ROS generation and activation of the p38 MAPK signaling pathway.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.