• Title/Summary/Keyword: G. lamblia

Search Result 27, Processing Time 0.024 seconds

Prevalence and Multilocus Genotyping of Giardia lamblia in Cattle in Jiangxi Province, China: Novel Assemblage E Subtypes Identified

  • Li, Sen;Zou, Yang;Zhang, Xue-Liang;Wang, Ping;Chen, Xiao-Qing;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.681-687
    • /
    • 2020
  • Giardia lamblia is a common enteric pathogen associated with diarrheal diseases. There are some reports of G. lamblia infection among different breeds of cattle in recent years worldwide. However, it is yet to know whether cattle in Jiangxi province, southeastern China is infected with G. lamblia. The objectives of the present study were to investigate the prevalence and examine the multilocus genotypes of G. lamblia in cattle in Jiangxi province. A total of 556 fecal samples were collected from 3 cattle breeds (dairy cattle, beef cattle, and buffalo) in Jiangxi province, and the prevalence and genotypes of G. lamblia were determined by the nested PCR amplification of the beta-giardin (bg) gene. A total of 52 samples (9.2%) were positive for G. lamblia. The highest prevalence of G. lamblia was detected in dairy cattle (20.0%), followed by that in beef cattle (6.4%), and meat buffalo (0.9%). Multilocus sequence typing of G. lamblia was performed based on sequences of the bg, triose phosphate isomerase and glutamate dehydrogenase loci, and 22, 42, and 52 samples were amplifiable, respectively, forming 15 MLGs. Moreover, one mixed G. lamblia infection (assemblages A and E) was found in the present study. Altogether, 6 novel assemblage E subtypes (E41*-E46*) were identified for the first time. These results not only provided baseline data for the control of G. lamblia infection in cattle in this southeastern province of China, but also enriched the molecular epidemiological data and genetic diversity of G. lamblia in cattle.

Evaluation of ${\alpha}$-Tubulin as an Antigenic and Molecular Probe to Detect Giardia lamblia

  • Kim, Ju-Ri;Shin, Myeong-Heon;Song, Kyoung-Ju;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The ${\alpha}/{\beta}$-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant ${\alpha}$-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of ${\alpha}$-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the ${\alpha}$-tubulin gene from G. lamblia. PCR-RFLP analysis of this ${\alpha}$-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B.Theresults indicate that ${\alpha}$-tubulin can be used as a molecular probe to detect G.lamblia.

Identification of a Novel Microtubule-Binding Protein in Giardia lamblia

  • Kim, Juri;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.461-469
    • /
    • 2016
  • Giardia lamblia is a protozoan that causes diarrheal diseases in humans. Cytoskeletal structures of Giardia trophozoites must be finely reorganized during cell division. To identify Giardia proteins which interact with microtubules (MTs), Giardia lysates were incubated with in vitro-polymerized MTs and then precipitated by ultracentifugation. A hypothetical protein (GL50803_8405) was identified in the precipitated fraction with polymerized MTs and was named GlMBP1 (G. lamblia microtubule-binding protein 1). Interaction of GlMBP1 with MTs was confirmed by MT binding assays using recombinant GlMBP1 (rGlMBP1). In vivo expression of GlMBP1 was shown by a real-time PCR and western blot analysis using anti-rGlMBP1 antibodies. Transgenic G. lamblia trophozoites were constructed by integrating a chimeric gene encoding hemagglutinin (HA)-tagged GlMBP1 into a Giardia chromosome. Immunofluorescence assays of this transgenic G. lamblia, using anti-HA antibodies, revealed that GlMBP1 mainly localized at the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. This result indicates that GlMBP1 is a component of the G. lamblia cytoskeleton.

Increased Innate Lymphoid Cell 3 and IL-17 Production in Mouse Lamina Propria Stimulated with Giardia lamblia

  • Lee, Hye-Yeon;Park, Eun-Ah;Lee, Kyung-Jo;Lee, Kyu-Ho;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.3
    • /
    • pp.225-232
    • /
    • 2019
  • Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, $IL-1{\beta}$, and interferon-${\gamma}$ was increased, whereas levels of IL-13, IL-5, and IL-22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.

Functional Identification of a Nuclear Localization Signal of MYB2 Protein in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.675-679
    • /
    • 2020
  • MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507-#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

Sensitive and Rapid Detection of Giardia lamblia Infection in Pet Dogs using Loop-Mediated Isothermal Amplification

  • Li, Jie;Wang, Peiyuan;Zhang, Aiguo;Zhang, Ping;Alsarakibi, Muhamd;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.237-241
    • /
    • 2013
  • Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from $10^{-1}$ to $10^{-5}ng/{\mu}l$ for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of $63^{\circ}C$ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha ($EF1{\alpha}$) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.

RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.185-189
    • /
    • 2019
  • To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.

Detection of Giardia lamblia in River Water Samples Using PCR and RT-PCR (PCR 및 RT-PCR을 이용한 하천수 중 Giardia lamblia 검출)

  • Cho, Eun-Ju;Lee, Mok-Young;Byun, Seung-Heun;Han, Sun-Hee;Ahn, Seoung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.904-908
    • /
    • 2007
  • The protozoan pathogen Giardia lamblia has been major cause of waterborne enteric disease. In this study, we tried to identify G. lamlbia of human infectious species and to detect viable C. lamblia in river water samples including three sites of Han River mainstream and an its creek using PCR and RT-PCR technique. The PCR/RT-PCR methods were performed by using giardin primer based on the giardin gene targeting ventral disk of Giardia. Sensitivity testing in the DNA/RNA extraction and PCR/RT-PCR amplification steps showed that it was possible to detect a single cyst of G. lamblia and viable G. lamblia. The PCR/RT-PCR methods were compared with immunofluorescence(IF) assay by analyzing 48 samples collected from the mainstream water and the creek water. The mean concentration of the total cysts were 6.3 cysts/10 L(arithmetic mean, n = 48) and the positive detection rate were 62.5%(30/48). And the mean concentration of the cysts excluding empty cysts were 4.5 cysts/10 L and the positive detection rate were 52.1%(25/48). It resulted that 24 of 48 samples included Giardia lamblia by PCR assay and 10 of 48 samples included viable G. lamblia by RT-PCR assay. It resulted that the PCR/RT-PCR technique would be available to river water samples with low concentration of Giardia cysts. And it could support the Korean protozoan standard method, which provides useful information for species and viability.

Optimized Conditions for In Vitro High Density Encystation of Giardia lamblia

  • Hong, Wook-Sun;Kim, Kyong-Jpp;Lee, Ki-Say
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.529-531
    • /
    • 2000
  • Giardia lamblia, a waterborne parasitic protozoa causing diarrhea and gastroenteritis, is transmitted to humans from untreated and treated water in the form of cysts. The ingestion of G. lamblia cysts is followed by the excystation of the cysts to trophozoites and subsequent colonization of the upper small intestine. In this study, the in vitro conditions for upper small intestine. In this study, the in vitro conditions for G. lamblia encystation were investigated to enhance the efficiency of cyst conversion and the resulting cyst density. The trophozoite of G. lamblia was cultivated to the late exponential growth phase, resulting in a high density of over $6{\times}10^7{\;}cells/ml$. The effects of pH, bile content, and induction time were evaluated; A cyst conversion of over 25% and 107 time were evaluated; A cyst conversion of over 25% and 107 cysts/ml were routinely obtained using the optimized encystation conditions including a slightly slkaline pH, 10 to 15 mg/ml of bile concentration, and 48-50 h of induction time.

  • PDF

Multiplex-Touchdown PCR to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the Major Causes of Traveler's Diarrhea

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.631-636
    • /
    • 2016
  • This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler's diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in > $1{\times}10^3$ oocysts for C. parvum, > $1{\times}10^4$ cysts for G. lamblia, and > 1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.