• Title/Summary/Keyword: G-S PCR

Search Result 718, Processing Time 0.032 seconds

Comparisons of Developmental Potential and Gene Expression Level in Porcine Nuclear Transfer, Parthenogenetic and Fertilized Embryos

  • Kim Jung-Gon;Kumar B. Mohana;Cho Sung-Keun;Ock Sun-A;Jeon Byeong-Gyun;Balasubramanian S.;Rho Gyu-Jin;Choe Sang-Yong
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2006
  • This study was conducted to detect the apoptosis incidence in blastocysts and to compare the abundance of Bax, Bcl2L1, VEGF and FGFR2 in in vitro fertilized (IVF), parthenogenetic (PAT) and nuclear transfer (NT) embryos. Oocytes matured for 40 hr were enucleated and reconstructed with confluenced fetal fibroblasts (FFs) derived from a ${\sim}45$ day fetus. Reconstructed eggs were then fused with 2 DC pulses (2.0 kV/cm, $30{\mu}sec$) and cultured with $7.5{\mu}g/ml$ cytochalasin B for 3 hr. Parthenotes (PAT) were produced with the same electric strength and culture for NT eggs. The embryos were cultured in NCSU-23 medium at $39^{\circ}C,\;5%\;CO_2,\;5%\l;O_2$ in air. In 3 runs, set of 10 embryos at the 4-cell to blastocyst stages were used to extract total RNA for analyzing the gene expression patterns of pro-apoptotic (Bax), anti-apoptotic (Bcl2L1), vasculogenesis (VEGF), implantation (FGFR2III) using real-time quantitative PCR. Cleavage and blastocyst rates were significantly higher (P<0.05) in IVF and PAT ($79.3{\pm}8.5\;and\;25.5{\pm}6.1,\;and\;85.0{\pm}6.4\;and\;38.6{\pm}5.5$, respectively)than NT counterparts ($65.1{\pm}5.2\;and\;15.6{\pm}3.0$, respectively). Significantly higher (P<0.05) total cells were observed in IVF controls and PAT ($34.7{\pm}5.8\;and\;38.1{\pm}4.1$) than NT embryos ($24.8{\pm}3.2$). Apoptosis index was significantly lower (P<0.05) in IVF than NT embryos. The Relative abundances (RA) of Bax and VEGF were significantly higher (P<0.05) at blastocyst stage in NT than IVF control. The RA of Bcl2L1 and FGFR2III were significantly higher (P<0.05) at blastocyst stage in IVF than NT. The present study observed the abnormal gene expressions in NT embryos at various developmental stages, suggesting certain clues to find out the cause of the low efficiency of NT to term.

Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds

  • Norrapoke, T.;Wanapat, M.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.971-979
    • /
    • 2012
  • Four, lactating dairy crossbreds ($50%{\times}50%$ Holstein Friesian${\times}$Native Zebu cattle) were randomly assigned according to a $2{\times}2$ factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a $4{\times}4$ Latin square design to receive four dietary treatments. All cows received concentrate at a proportion of 1 kg concentrate per 2 kg of milk yield, and urea-treated 5% rice straw (UTRS) was given ad libitum. It was found that total dry matter intakes, nutrient digestibility, ruminal pH and $NH_3$-N concentrations were not affected (p>0.05) by treatments. Concentrations of ruminal pH and $NH_3$-N were not affected by dietary treatments although the concentration of BUN varied significantly (p<0.05) between protein levels (p<0.05). The populations of rumen bacteria and fungal zoospores did not differ among treatments (p>0.05); however, the population of protozoa was decreased (p<0.05) when cows received Mago-pel supplementation. The composition of the population of bacteria, identified by real-time PCR technique, including total bacteria, methanogens, Fibrobacter succinogenes and Ruminococcus albus was similar (p>0.05) among dietary treatments (p>0.05); however, copy numbers of Ruminococcus flavefaciens was increased when protein level increased (p<0.05). Microbial protein synthesis, in terms of both quantity and efficiency, was enriched by Mago-pel supplementation. Milk yield was greatest in cows fed UTRS based diets with concentrate containing protein at 16% CP with Mago-pel, but were lowest without Mago-pel (p<0.05). In addition, protein level and supplementation of Mago-pel did not affect (p>0.05) milk composition except solids-not-fat which was higher in cows fed the diet with 19% CP. Therefore, feeding a concentrate containing 16% CP together with 300 g/hd/d Mago-pel supplementation results in changes in rumen fermentation and microbial population and improvements in milk production in lactating dairy crossbreds fed on UTRS.

The Effectiveness of Ulmus Davidiana Planch Herbal Acupuncture to Inhibit MIF Activation on Lipopolysaccharide-induced Rheumatoid Arthritis Model (유근피(楡根皮) 약침이 lipopolysaccharide 유발 류마티스 관절염 모델에서 MIF 활성 억제에 미치는 영향)

  • Byun, Hyuk;Park, In-Shik;Cho, Hyun-Seok;Kim, Kap-Sung;Lee, Seung-Deok
    • Journal of Acupuncture Research
    • /
    • v.23 no.6
    • /
    • pp.117-132
    • /
    • 2006
  • Objectives : The purpose of this study is to investigate the effect of Ulmus davidiana Planch herbal acupuncture solution in LPS-stimulated RAW 264.7 cells and mouse knee joints, perfom1ed several experimental items: those are MIF mRNA, MIF, $TNF-{\alpha}$, $NF-{\kappa}B$ p65, iNOS mRNA, iNOS, NO, synovial hyperplasia, angiogenesis and fibrosis. Methods : In order to observe mRAN expression of MIF and iNOS in LPS-stimulated RAW 264.7 cells, RT-PCR was used. NO production in LPS-stimulated RAW 264.7 cells was measured by nitrite assay. All the female BALB/c mice were bred and maintained in pathogen-free mouse colonies and were 6 weeks of age on beginning of the experiment. The experimental model of RA was induced by injection of $50{\mu}g/kg$ LPS. Ulmus davidiana Planch herbal acupuncture solution was injected into either S 35 (犢鼻) or EX-LE 202 (內膝眼) of mice in turn daily for 19 days. Immunohistochemical staining was carried out to assess $TNF-{\alpha}$, $NF-{\kappa}B$ p65 and iNOS expression in synovial membrane. Synovial hyperplasia, angiogenesis and fibrosis in synovial membrane was observed with a microscope. Results : 1. Ulmus davidiana Planch herbal acupuncture solution inhibited mRNA expression of MIF and iNOS in dependence on a density of it in LPS-stimulated RAW 264.7 cells. 2. Ulmus davidiana Planch herbal acupuncture solution decreased synovial hyperplasia, angiogenesis and fibrosis in LPS-stimulated mouse knee joints. 3. Ulmus davidiana Planch herbal acupuncture solution curtailed production of MIF, $TNF-{\alpha}$, $NF-{\kappa}B$ p65, iNOS in LPS-stimulated mouse knee joints. Conclusion : On the basis of these results, It was shown that Ulmus davidiana Planch herbal acupuncture solution is significantly able to inhibit the production of MIF as a top in cytokines related to inflammatory or irrlll1une responses. Our results may provide that Ulmus davidiana Planch herbal acupuncture solution has beneficial effect in not only RA but other inflammatory or immune deases.

  • PDF

Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses

  • Xu, Feng;Cheng, Hua;Cai, Rong;Li, Lin Ling;Chang, Jie;Zhu, Jun;Zhang, Feng Xia;Chen, Liu Ji;Wang, Yan;Cheng, Shu Han;Cheng, Shui Yuan
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.536-547
    • /
    • 2008
  • Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4

  • Yang, Miao;Liu, Ran;Li, Xiajun;Liao, Juan;Pu, Yuepu;Pan, Enchun;Yin, Lihong;Wang, Yi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.873-880
    • /
    • 2014
  • In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.

Long-Term Effects of Growth Regulators and Nitrogen Sources on Proliferation and Turnover of Cell Wall Polysaccharides in Suspension Culture of Kidney Bean (Phaseolus vulgaris L.) (강낭콩의 현탁배양시 증식과 세포벽 다당류 전환에 미치는 생장조절제 및 질소원의 장기간 효과)

  • CHAI, Youn Kyung;KIM, Kyong Ho;YEO, Up Dong;SAKURAI Naoki
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 1998
  • To underatand in vitro regulation of differentiation, the effects of growth regulators and nitrogen source on metabolism of cell wall polysaccharides in suspension culture of kidney bean (Phaseolus vulgaris L.) were investigated. The suspension cells (cell clusters) were directly induced from the epicotyl segments of the seedlings, which were cultivated in MS medium supplemented with 1.0mg/L of 2,4-D and 0.5 mg/L of kinetin. When compared with cell wall sugar contents of the epicotyl segments, the cellulose content of the suspension-cultured cells decreased; while the pectin and hemicellulose content increased; suggesting increases of rhamnogalacturonan I and arabinogalactan IIduring the dedifferentiation, respectively, The effects of growth regulators(2,4-D, 1.0mg/L and kinetin, 0.5mg/L) and nitrogen source (potasium nitrate, 19.0mg/L and ammonium nitrate, 16.5 g/L) in the medium on the proliferation and the turnover of the cell wall polysaccharides were investigated for 30 days. In the medium with growth regulators and without nitrogen source, the proliferation rate was extremely high (16 folds). Growth regulators and nitrogen source increased the pectin content. Analysis of neutral sugar composition of pectin fraction showed that nitrogen source enhanced rhamnose level remarkably, suggesting that rhamnogalacturonan I was the one most likely synthesized. In hemicellulose fraction, growth regulators reduced arabinose level, suggesting that arabinogalactan II was degraded. And nitrogen source reduced galactose level, suggesting that xyloglucan was also degraded.

  • PDF

Sensitive and Noninvasive Detection of Aberrant SFRP2 and MGMT-B Methylation in Iranian Patients with Colon Polyps

  • Naini, M Alizade;Mokarram, P;Kavousipour, S;Zare, N;Atapour, A;Zarin, M Hassan;Mehrabani, G;Borji, M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2185-2193
    • /
    • 2016
  • Background: The pathogenesis of sporadic colorectal cancer (CRC) is influenced by the patient genetic background and environmental factors. Based on prior understanding, these are classified in two major pathways of genetic instability. Microsatellite instability (MSI) and CPG island methylator phenotype (CIMP) are categorized as features of the hypermethylated prototype, and chromosomal instability (CIN) is known to be indicative of the non-hypermethylated category. Secreted frizzled related protein 2 (SFRP2), APC1A in WNT signaling pathway and the DNA repair gene, O6-methylguanine-DNA methyltransferase (MGMT), are frequently hypermethylated in colorectal cancer. Detection of methylated DNA as a biomarker by easy and inexpensive methods might improve the quality of life of patients with CRC via early detection of cancer or a precancerous condition. Aim: To evaluate the rate of SFRP2 and MGMT hypermethylation in both polyp tissue and serum of patients in south Iran as compared with matched control normal population corresponding samples. Materials and Methods: Methylation-specific PCR was used to detect hypermethylation in DNA extracted from 48 polypoid tissue samples and 25 healthy individuals. Results: Of total polyp samples, 89.5% had at least one promoter gene hypermethylation. The most frequent methylated locus was SFRP2 followed by MGMT-B (81.2 and 66.6 percent respectively). Serologic detection of hypermethylation was 95% sensitive as compared with polyp tissue. No hypermethylation was detected in normal tissue and serum and its detection in patients with polyps, especially of serrated type, was specific. Conclusions: Serologic investigation for detection of MGMT-B, SFRP2 hypermethylation could facilitate prioritization of high risk patients for colonoscopic polyp detection and excision.

Water Extract of Rosa laevigata Michx. Protects Hepatocytes from Arachidonic Acid and Iron-mediated Oxidative Stress (아라키돈산과 철 유도성 산화적 스트레스에 대한 금앵자(金櫻子) 열수 추출물의 간세포 보호 효능)

  • Ko, Hae Li;Jegal, Kyung Hwan;Song, Si Yeon;Kim, Nan Ee;Kang, Jiwon;Byun, Sung Hui;Kim, Young Woo;Cho, Il Je;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.7-15
    • /
    • 2015
  • Objectives : Rosa laevigata Michx. has been used for the treatment of renal disease in traditional Korean medicine. In this study, we investigated cytoprotective effect of R. laevigata water extract (RLE) against oxidative stress induced by arachidonic acid (AA) + iron.Methods : To evaluate the protective effects of RLE against AA + iron-induced oxidative stress in HepG2 cell, cell viability and changes on apoptosis-related proteins were assessed by MTT and immunoblot analyses. The effects of RLE on reduced glutathione level, production of reactive oxygen species and mitochondrial membrane potential were also monitored. Furthermore, to verify underlying molecular mechanism, NF-E2-related factor 2 (Nrf2) was examined by immunoblot analysis. Additionally, Nrf2 transactivation and its downstream target genes expression were also determined by reporter gene and realtime RT-PCR analyses.Results : RLE pretreatment (30-300 μg/ml) prevented cells from AA + iron-mediated cell death in a concentration dependent manner. In addition, 100 μg/ml RLE inhibited AA + iron-induced glutathione depletion, reactive oxygen species production and mitochondrial dysfunction. RLE accumulated nuclear Nrf2 and also transactivated Nrf2, which was evidenced by antioxidant response element- and glutathione S-transferase A2-driven luciferase activities and mRNA level of glutamate-cysteine ligase catalytic subunit, NAD(P)H:quinone oxidoreductase 1 and sestrin 2. Moreover, protective effect of RLE against AA + iron was abolished in Nrf2 knockout cells.Conclusions : These results indicate that RLE has the ability to protect hepatocyte against oxidative stress through Nrf2 activation.

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.

Generation of $CD2^+CD8^+$ NK Cells from c-$Kit^+$ Bone Marrow Cells in Porcine

  • Lim, Kyu-Hee;Han, Ji-Hui;Roh, Yoon-Seok;Kim, Bum-Seok;Kwon, Jung-Kee;You, Myoung-Jo;Han, Ho-Jae;Ejaz, Sohail;Kang, Chang-Won;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • Natural killer (NK) cells provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. Because bone marrow-derived hematopoietic stem cells (HSCs), lymphoid protenitors, can give rise to NK cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that porcine c-$kit^+$ bone marrow cells (c-$kit^+$ BM cells) develop into NK cells in vitro in the presence of various cytokines [interleukin (IL)-2, IL-7, IL-15, IL-21, stem cell factor (SCF), and fms-like tyrosine kinase-3 ligand (FLT3L)]. Adding hydrocortisone (HDC) and stromal cells greatly increases the frequency of c-$kit^+$ BM cells that give rise to $CD2^+CD8^+$ NK cells. Also, intracellular levels of perforin, granzyme B, and NKG2D were determined by RT-PCR and western blotting analysis. It was found that of perforin, granzyme B, and NKG2D levels significantly were increased in cytokine-stimulated c-$kit^+$ BM cells than those of controls. And, we compared the ability of the cytotoxicity of $CD2^+CD8^+$ NK cells differentiated by cytokines from c-$kit^+$ BM cells against K562 target cells for 28 days. Cytokines-induced NK cells as effector cells were incubated with K562 cells as target in a ratio of 100 : 1 for 4 h once a week. In results, $CD2^+CD8^+$ NK cells induced by cytokines and stromal cells showed a significantly increased cytotoxicity 21 days later. Whereas, our results indicated that c-$kit^+$ BM cells not pretreated with cytokines have lower levels of cytotoxicity. Taken together, this study suggests that cytokines-induced NK cells from porcine c-$kit^+$ BM cells may be used as adoptive transfer therapy if the known obstacles to xenografting (e.g. immune and non-immune problems) were overcome in the future.