• Title/Summary/Keyword: G-$Pr{\ddot{u}}fer$ domain

Search Result 3, Processing Time 0.018 seconds

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

EVERY ABELIAN GROUP IS THE CLASS GROUP OF A RING OF KRULL TYPE

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.149-171
    • /
    • 2021
  • Let Cl(A) denote the class group of an arbitrary integral domain A introduced by Bouvier in 1982. Then Cl(A) is the ideal class (resp., divisor class) group of A if A is a Dedekind or a Prüfer (resp., Krull) domain. Let G be an abelian group. In this paper, we show that there is a ring of Krull type D such that Cl(D) = G but D is not a Krull domain. We then use this ring to construct a Prüfer ring of Krull type E such that Cl(E) = G but E is not a Dedekind domain. This is a generalization of Claborn's result that every abelian group is the ideal class group of a Dedekind domain.