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EVERY ABELIAN GROUP IS THE CLASS GROUP OF

A RING OF KRULL TYPE

Gyu Whan Chang

Abstract. Let Cl(A) denote the class group of an arbitrary integral
domain A introduced by Bouvier in 1982. Then Cl(A) is the ideal class

(resp., divisor class) group of A if A is a Dedekind or a Prüfer (resp.,

Krull) domain. Let G be an abelian group. In this paper, we show that
there is a ring of Krull type D such that Cl(D) = G but D is not a

Krull domain. We then use this ring to construct a Prüfer ring of Krull

type E such that Cl(E) = G but E is not a Dedekind domain. This is
a generalization of Claborn’s result that every abelian group is the ideal

class group of a Dedekind domain.

Introduction

Let Cl(A) denote the class group of a general integral domain A intro-
duced by Bouvier in [7]. Hence, if A is a Dedekind or a Prüfer domain (resp.,
Krull domain), then Cl(A) is the ideal class (resp., divisor class) group of A.
Claborn’s celebrated theorem says that given an abelian group G, there is a
Dedekind domain D with ideal class group G [10, Theorem 7]. Then a subring
D + XK[[X]] of the power series ring K[[X]] over the quotient field K of D is
a two-dimensional non-Noetherian Prüfer domain with Cl(D + XK[[X]]) = G
[17, Example 45.10].

For another example, let G be an abelian group, D be an integral domain
with quotient field K, X1(D) be the set of height-one prime ideals of D, X
be an indeterminate over D, K[X] be the polynomial ring over K, and R1 =
D + XK[X], i.e., R1 = {f ∈ K[X] | f(0) ∈ D}. Then Cl(R1) = Cl(D)
[5, Theorem 3.12] and D is a Prüfer domain if and only if R1 is [11, Corollary
4.15]. Hence, if D is a Dedekind domain with Cl(D) = G, then R1 is a Prüfer
domain with Cl(R1) = G. However, note that R1 is a Dedekind domain if
and only if D = K. Also, R1 is a Prüfer ring of Krull type if and only if
|X1(D)| <∞ [2, Corollary 2.6], and in this case, Cl(R1) = Cl(D) = {0}. Note
that
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Dedekind domain ⇒ Prüfer ring of Krull type ⇒ Prüfer domain;

hence it is natural to ask if there is a Prüfer ring of Krull type that is not a
Dedekind domain and has a preassigned ideal class group. More generally, is
there a ring of Krull type that is not a Krull domain and has a preassigned
class group? In this paper, we prove that if G is an abelian group, there is a
ring of Krull type D such that Cl(D) = G but D is not a Krull domain. We
then use this ring to construct a non-Noetherian Prüfer ring of Krull type with
the same ideal class group.

Let Λ be a nonempty index set, {xi, yi, ui | i ∈ Λ} (simply, {xi, yi, ui}) be an
algebraically independent set over D, vi = yi · uixi for all i ∈ Λ, Z(Λ) be the direct

sum of Λ-copies of the additive group of integers, and R = D[{xi, yi, ui, vi | i ∈
Λ}] (simply, R = D[{xi, yi, ui, vi}]). It is known that if D is a Krull domain,
then R is a Krull domain with Cl(R) = Cl(D) ⊕ Z(Λ) [16, Proposition 14.9].
In Section 1, we first review definitions and known results related to rings of
Krull type (including the t-operation and the class group of integral domains).
In Section 2, we study some ring-theoretic properties of the ring R. Among
other things, we show that (i) D is a PvMD (resp., a ring of Krull type, an
independent ring of Krull type, a generalized Krull domain, a TV-PvMD) if
and only if R is; (ii) if D is a PvMD, then Cl(R) = Cl(D)⊕Z(Λ). We also give
such type of integral domains D with Cl(D) = {0} so that Cl(R) = Z(Λ).

Let H be a subgroup of Cl(D) and X be an indeterminate over D. In
Section 3, we show that (iii) if D is a ring of Krull type, there is a set Ω of
maximal t-ideals of D[X] such that

⋂
Q∈ΩD[X]Q is a ring of Krull type and

Cl(
⋂
Q∈ΩD[X]Q) = Cl(D)/H. Hence, by the result of Section 2, we have

that (iv) if G is an abelian group, there is a ring of Krull type (resp., an
independent ring of Krull type, a generalized Krull domain, a TV-PvMD) D
such that Cl(D) = G but D is not an independent ring of Krull type (resp.,
a generalized Krull domain, a Krull domain, a Krull domain). We show that
(v) if D is a PvMD, there is a Prüfer domain T such that Cl(T ) = Cl(D)
and T ∩ K = D. Finally, we use these results to show that given an abelian
group G, there is a Prüfer domain of finite character (resp., an h-local Prüfer
domain, a generalized Krull domain of dimension one, a Prüfer domain in which
each nonzero ideal is a v-ideal) D such that Cl(D) = G but D is not an h-local
Prüfer domain (resp., a generalized Krull domain of dimension one, a Dedekind
domain, a Dedekind domain).

1. Rings of Krull type and the t-operation

Let D be an integral domain with quotient field K. An overring of D means
a subring of K containing D. A valuation overring V of D is said to be essential
for D if V is a quotient ring of D. Clearly, if M is the maximal ideal of V ,
then V is essential for D if and only if V = DM∩D.

Definition 1.1. Let V = {Vα} be a family of valuation overrings of D.
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(1) D =
⋂
α Vα.

(2) Each Vα is a rank-one discrete valuation ring (DVR).
(3) Each Vα is a rank-one valuation ring.
(4) The family V has finite character, i.e., each nonzero x ∈ K is a nonunit

in only finitely many valuation rings in V.
(5) Each Vα is essential for D.

We say that D is a Krull domain (resp., generalized Krull domain, ring of Krull
type) if there is a family V satisfying (1), (2) and (4) (resp., (1), (3), (4) and
(5); (1), (4) and (5)). A ring of Krull type D is an independent ring of Krull
type if the valuation rings in V are independent, i.e., there is no nontrivial
valuation overring of D containing two distinct valuation rings in V.

An integral domain D is said to be of finite character if each nonzero nonunit
of D is contained in only finitely many maximal ideals of D. We say that
D is h-local if D is of finite character and each nonzero prime ideal of D is
contained in a unique maximal ideal of D. Note that D is a Prüfer domain
(i.e., each nonzero finitely generated ideal of D is invertible) if and only if
DM is a valuation domain for all maximal ideals M of D [17, Theorem 22.1].
Thus, a Prüfer domain of finite character (resp., an h-local Prüfer domain)
is a ring of Krull type (resp., an independent ring of Krull type). It is well
known that D is a Krull domain (resp., generalized Krull domain) if and only
if D =

⋂
P∈X1(D)DP , DP is a rank-one DVR (resp., rank-one valuation ring)

for all P ∈ X1(D), and the family {DP | P ∈ X1(D)} has finite character. For
this kind of characterization of rings of Krull type, we first need the notion of
the t-operation on an integral domain.

A nonzero D-submodule I of K is called a fractional ideal if dI ⊆ D for some
0 6= d ∈ D. Let F(D) be the set of nonzero fractional ideals of D. It is clear
that if I ∈ F(D) and I−1 = {x ∈ K | xI ⊆ D}, then I−1 ∈ F(D), and hence
(i) Iv = (I−1)−1 and It =

⋃
{Jv | J ⊆ I and J ∈ F(D) is finitely generated}

are well-defined, (ii) I ⊆ It ⊆ Iv, (iii) (It)t = It and (Iv)v = (It)v = (Iv)t = Iv,
and (iv) It = Iv if I is finitely generated. Let ∗ = v or t. An I ∈ F(D) is
called a ∗-ideal if I∗ = I, and a ∗-ideal is called a maximal ∗-ideal (resp., prime
∗-ideal) if it is maximal among proper integral ∗-ideals of D (resp., a prime
ideal). Let ∗-Max(D) (resp., ∗-Spec(D)) denote the set of maximal (resp.,
prime) ∗-ideals of D. While v-Max(D) can be empty as in the case of rank-one
nondiscrete valuation domains, it is well known that t-Max(D) 6= ∅ when D
is not a field; a maximal t-ideal is a prime ideal; each t-ideal is contained in
a maximal t-ideal; and each prime ideal minimal over a t-ideal is a t-ideal; so
t-Max(D) ⊆ t-Spec(D) and X1(D) ⊆ t-Spec(D).

An I ∈ F(D) is said to be t-invertible if (II−1)t = D. A t-ideal I of D
is said to be of finite type if I = Jv for some finitely generated ideal J of D.
It is known that I is t-invertible if and only if It is of finite type and IDP is
principal for all P ∈ t-Max(D) [24, Proposition 2.6]. We say that D is a Prüfer
v-multiplication domain (PvMD) if every nonzero finitely generated ideal of
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D is t-invertible; equivalently, the set of all fractional t-ideals of finite type
forms a group under the multiplication I ∗ J = (IJ)t. It is easy to see that
an invertible ideal is a t-invertible t-ideal. Thus, a Prüfer domain is a PvMD.
It is also known that D is a Krull domain if and only if each nonzero (prime)
ideal of D is t-invertible [25, Theorem 3.6]; hence Krull domains are PvMDs.
For more on the basic properties of the v- and t-operations, see [17, Sections
32 and 34].

We now give some very useful properties of the t-operation which will be
used without further comments.

Lemma 1.2. Let D be an integral domain, S be a multiplicative set of D, and
I be a nonzero fractional ideal of D.

(1) (IDS)t = (ItDS)t.
(2) If It = Jt for a finitely generated ideal J of D, then (IDS)−1 = I−1DS.
(3) If I is t-invertible, then (IDS)v = IvDS = (IDS)t = ItDS.
(4) If D is a PvMD, then (IDS)t = ItDS ; so if It = I, then (IDS)t = IDS.
(5) If IDS is an integral t-ideal of DS, then IDS ∩D is a t-ideal of D.

Proof. (1) and (2). [24, Lemma 3.4]. (3) Note that both It and I−1 are of finite
type. Thus, (IDS)v = IvDS = (IDS)t = ItDS by (1), (2) and [8, Lemmas 2.5
and 2.6]. (4) Note that (IDS)t =

⋃
{(JDS)v | J ⊆ I is nonzero finitely

generated} and (JDS)v = JvDS . Thus, (IDS)t = ItDS . (5) [24, Lemma
3.17]. �

Let {Xα} be a nonempty set of indeterminates over K and K[{Xα}] be the
polynomial ring over K. For f ∈ K[{Xα}], let c(f) denote the fractional ideal
of D generated by the coefficients of f . Dedekind-Mertens lemma states that if
f, g ∈ K[{Xα}] are nonzero, then c(f)m+1c(g) = c(f)mc(fg) for some integer
m ≥ 1 [6, Theorem 2]. Hence, if c(f) is invertible (resp., t-invertible), then
c(f)c(g) = c(fg) (resp., (c(f)c(g))t = c(fg)t).

Lemma 1.3. (cf. [23, Theorem 1.4]) Let Q be a prime t-ideal of D[{Xα}] such
that Q ∩D = (0). Then the following statements are equivalent.

(1) Q is a maximal t-ideal.
(2) c(Q)t = D, where c(Q) =

∑
f∈Q c(f).

(3) Q is t-invertible.

In this case, htQ = 1.

Proof. (1) ⇒ (2) If c(Q)t ( D, then there is a maximal t-ideal P of D such
that c(Q)t ⊆ P . Hence, PD[{Xα}] is a maximal t-ideal [15, Lemma 2.1] such
that Q ( PD[{Xα}], a contradiction.

(2) ⇒ (3) Since c(Q)t = D, there is an f ∈ Q such that c(f)v = D. If
htQ ≥ 2, then there is a g ∈ Q such that gK[{Xα}] is a prime ideal and f 6∈
gK[{Xα}]. Hence, D[{Xα}] = (g, f)v ⊆ Qt = Q ( D[{Xα}], a contradiction.
Thus, htQ=1, and hence there is an h ∈ Q such that QD\{0} = hK[{Xα}].
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Then Q = (f, h)v, so it suffices to show that QM is principal for all M ∈ t-
Max(D[{Xα}]). Let M be a maximal t-ideal of D[{Xα}]. If M ∩D 6= (0), then
M = (M ∩D)D[{Xα}] and M ∩D is a maximal t-ideal [15, Proposition 2.2].
Hence, Q *M , and thus QM = D[{Xα}]M . If M ∩D = (0), then c(M)t = D,
and hence htM = 1 by the previous sentence. Thus, QM = hD[{Xα}]M or
QM = D[{Xα}]M .

(3) ⇒ (1) [23, Proposition 1.3]. �

Let S = {f ∈ D[{Xα}] | c(f) = D} and Nv = {f ∈ D[{Xα}] | c(f)v = D}.
Then S and Nv are saturated multiplicative sets of D[{Xα}]. Clearly, S ⊆ Nv,
and hence D[{Xα}]S ⊆ D[{Xα}]Nv . Also, S = Nv if and only if D[{Xα}]S =
D[{Xα}]Nv , if and only if each maximal ideal of D is a t-ideal. Let Max(A)
denote the set of maximal ideals of an integral domain A. It is known that

Max(D[{Xα}]Nv ) = {PD[{Xα}]Nv | P ∈ t-Max(D)}
and each maximal ideal of D[{Xα}]Nv is a t-ideal [24, Propositions 2.1 and 2.2].
The ring D[{Xα}]S , denoted by D({Xα}), is called the Nagata ring of D. We
know that Max(D({Xα})) = {MD({Xα}) | M ∈ Max(D)} [17, Proposition
33.1] and D is a Prüfer domain if and only if D({Xα}) is a Prüfer domain
[17, Theorem 33.4].

Theorem 1.4. Let D be an integral domain. Then the following statements
are equivalent.

(1) D is a PvMD.
(2) DP is a valuation domain for all P ∈ t-Max(D).
(3) D[{Xα}] is a PvMD.
(4) D[{Xα, X

−1
α }] is a PvMD.

(5) D[{Xα}]Nv is a Prüfer domain, where Nv = {f ∈ D[{Xα}] | c(f)v =
D}.

(6) D is integrally closed and Q is t-invertible for all prime t-ideals Q of
D[{Xα}] with Q ∩D = (0).

(7) D is integrally closed and if Q is a prime ideal of D[{Xα}] such that
Q ⊆ PD[{Xα}] for some P ∈ t-Max(D), then Q = (Q ∩D)D[{Xα}].

In this case,

t-Spec(D[{Xα}]) = {PD[{Xα}] | P ∈ t-Spec(D)}
∪ {Q ∈ t-Max(D[{Xα}]) | Q ∩D = (0)}.

Proof. See [18, Theorem 5] for (1) ⇔ (2); [24, Theorem 3.7] for (1) ⇔ (3) ⇔
(5); [26, Corollaries 2.4 and 2.6] for (1)⇔ (4); and [24, Theorem 3.1] for (1)⇒
(7).

(7)⇒ (6) Let Q be a prime t-ideal of D[{Xα}] such that Q∩D = (0). Then
c(Q) * P for all P ∈ t-Max(D) by (6), and hence c(Q)t = D. Thus, Q is
t-invertible by Lemma 1.3.

(6)⇒ (1) It suffices to show that every nonzero ideal of D generated by two
elements is t-invertible. Let 0 6= a, b ∈ D, and let f = aX + b for X ∈ {Xα}
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and Qf = fK[{Xα}] ∩D[{Xα}]. Then Qf is a prime t-ideal of D[{Xα}] such
that Qf = fc(f)−1[{Xα}] [17, Corollary 34.9] and Qf ∩D = (0). Hence, Qf ,
and so c(f)−1, is t-invertible. Thus, c(f) = (a, b) is t-invertible.

For “In this case”, let I be a nonzero ideal of D. Then (ID[{Xα}])t =
ItD[{Xα}] ([15, Lemma 2.1] or [24, Corollary 2.3]), and hence I is a t-ideal if
and only if ID[{Xα}] is a t-ideal. Thus, the result follows from (7) and Lemma
1.3. �

Corollary 1.5. Let D be a PvMD and P be a nonzero prime ideal of D. Then
the following statements are equivalent.

(1) P is a t-ideal.
(2) DP is a valuation domain.
(3) Pt ( D.

Proof. (1) ⇔ (2) [27, Proposition 4.1].
(1) ⇒ (3) Clear.
(3)⇒ (2) If Pt ( D, then P ⊆ Q for some Q ∈ t-Max(D). Hence, DQ ⊆ DP ,

and since DQ is a valuation domain by Theorem 1.4, DP is also a valuation
domain. �

An integral domain D is said to be of finite t-character if each nonzero
nonunit of D is contained in only finitely many maximal t-ideals of D. The
ring of Krull type was introduced by Griffin [19] and characterized by a PvMD
of finite t-character [18, Theorem 7]. The (1)-(3) of the next theorem appears
in [18], but we give the proof for easy reference of the reader.

Theorem 1.6. Let D be an integral domain. Then the following statements
are equivalent.

(1) D is a ring of Krull type.
(2) D is a PvMD of finite t-character.
(3) D[{Xα}] is a ring of Krull type.
(4) D[{Xα}]Nv is a Prüfer domain of finite character.

Proof. (1)⇒ (2) If D is a ring of Krull type, then there is a set {Pα | α ∈ Θ} of
prime ideals of D such that {DPα | α ∈ Θ} satisfies the (1) and (4) of Definition
1.1. Let P be a maximal t-ideal of D, and assume that P * Pα for all α ∈ Θ.
If 0 6= a ∈ P , then there are only finitely many prime ideals in {Pα | α ∈ Θ}
that contain a, say, Pα1 , . . . , Pαn . Since P * Pαi for i = 1, . . . , n, there is an
element b ∈ P \

⋃n
i=1 Pαi . Hence, by Lemma 1.2(2),

(a, b)−1 ⊆
⋂
α∈Θ

(a, b)−1DPα =
⋂
α∈Θ

((a, b)DPα)−1

=
⋂
α∈Θ

DPα = D.

Thus, (a, b)−1 = D, and hence D = (a, b)v ⊆ Pt = P , a contradiction. Hence,
P ⊆ Pα for some α ∈ Θ. Note that PαDPα is a t-ideal and Pα = PαDPα ∩D.
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Hence, Pα is a t-ideal, and thus P = Pα. Thus, {DP | P ∈ t-Max(D)} ⊆
{DPα | α ∈ Θ}, so D is a PvMD of finite t-character by Theorem 1.4.

(2) ⇒ (1) It suffices to take V = {DP | P ∈ t-Max(D)} in Definition 1.1.
(2) ⇔ (3) By Theorem 1.4, it suffices to prove the finite t-characterness.

Let Q be a maximal t-ideal of D[{Xα}]. If Q ∩ D = (0), then htQ = 1 by
Lemma 1.3, and since K[{Xα}] is a UFD, each nonzero element of D[{Xα}] is
contained in only finitely many such maximal t-ideals. Thus, by Theorem 1.4,
D is of finite t-character if and only if D[{Xα}] is of finite t-character.

(2) ⇔ (4) Recall that Max(D[{Xα}]Nv ) = {PD[{Xα}]Nv | P ∈ t-Max(D)}.
Hence, D is of finite t-character if and only if D[{Xα}]Nv is of finite character.
Thus, the result follows directly from Theorem 1.4. �

By Theorem 1.4 and [17, Theorem 22.1], a Prüfer domain is exactly the
PvMD whose nonzero maximal ideals are t-ideals. Hence, by Theorem 1.6, D
is a Prüfer domain of finite character if and only if D is a Prüfer ring of Krull
type. We next use the PvMD to characterize generalized Krull domains and
independent rings of Krull type. This result also shows that an independent
Prüfer ring of Krull type is just the h-local Prüfer domain.

Corollary 1.7. (1) D is an independent ring of Krull type if and only if
D is a PvMD of finite t-character in which no two distinct maximal
t-ideals contain a nonzero prime ideal.

(2) D is a generalized Krull domain if and only if D is a PvMD of finite
t-character in which each prime t-ideal is a maximal t-ideal.

Proof. This is an immediate consequence of Theorem 1.6. �

Following [22], we say that D is a TV-PvMD if D is a PvMD on which
t = v, i.e., It = Iv for all nonzero fractional ideals I of D. It is known that
D is a TV-PvMD if and only if D is an independent ring of Krull type whose
maximal t-ideals are t-invertible [22, Theorem 3.1]. Obviously, a Krull domain
is a TV-PvMD. Hence, by Definition 1.1 and Theorem 1.6, we have the following
implications:

generalized
Krull domain

%%

::

Krull domain

%%

independent ring
of Krull type
88

// ring of Krull type

��
TV-PvMD PvMD
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However, none of the implications is reversible. For example, the ring Z +
XQ[X] is a PvMD but not a ring of Krull type, and see Example 2.7 or Corol-
lary 3.4 for the other implications.

The next result is already known (see [2, Corollary 2.9], [22, Proposition
4.6], and [17, Theorem 43.11] for the case of a single indeterminate).

Corollary 1.8. D is an independent ring of Krull type (resp., a TV-PvMD, a
generalized Krull domain, a Krull domain) if and only if D[{Xα}] is.

Proof. By Theorem 1.6, D and D[{Xα}] are rings of Krull type. Let Q be a
prime t-ideal of D[{Xα}]. Then either Q ∩ D = (0) or Q = PD[{Xα}] for
some prime t-ideal P of D by Theorem 1.4. If Q ∩ D = (0), then Q is a
maximal t-ideal, and hence Q is t-invertible and D[{Xα}]Q is a rank-one DVR
by Lemma 1.3. Furthermore, if P is a prime t-ideal of D, then PD[{Xα}]
is a prime t-ideal, D[{Xα}]PD[{Xα}] = DP ({Xα}) is a valuation domain such
that htP = dim(DP ) = dim(D[{Xα}]PD[{Xα}]) = ht(PD[{Xα}]), and P is t-
invertible if and only if PD[{Xα}] is t-invertible. Thus, the results follow from
these observations and the definitions. �

Let A ⊆ B be an extension of integral domains. We say that B is t-linked
over A if I−1 = A for a nonzero finitely generated ideal I of A implies (IB)−1 =
B; equivalently, if Q is a prime t-ideal of B, then either Q ∩ A = (0) or
Q ∩A 6= (0) and (Q ∩A)t ( A [4, Proposition 2.1]. The notion of t-linkedness
was introduced in [13] in order to study the PvMD analogue of [12, Theorem
1] that D is a Prüfer domain if and only if each overring of D is integrally
closed. It is clear that if S is a multiplicative set of A, then AS is t-linked over
A. Also, if A and B are Krull domains, then B is t-linked over A if and only if
ht(Q∩A) ≤ 1 for all maximal t-ideals Q of B, i.e., condition (PDE) is satisfied
(cf. [16, Theorem 6.2]).

Let Λ be a set of prime t-ideals of an integral domain D. Then
⋂
P∈ΛDP is

called a subintersection of D. It is known that if D is a PvMD, then an overring
of D is t-linked over D if and only if it is a subintersection of D [24, Theorem
3.8]. Hence, every t-linked overring of a ring of Krull type is a ring of Krull
type [27, Corollary 7.2]. The following lemma presents a complete picture from
our perspective.

Lemma 1.9. Let D be a ring of Krull type (resp., an independent ring of Krull
type, a generalized Krull domain, a Krull domain). If R is a t-linked overring
of D, then R is also a ring of Krull type (resp., an independent ring of Krull
type, a generalized Krull domain, a Krull domain).

Proof. Let Q be a maximal t-ideal of R, and let P = Q∩D. Then P is a prime
t-ideal of D, and hence DP is a valuation domain by Theorem 1.4. Hence,
DP = RQ and RQ is a valuation domain. Thus, R is a PvMD. Next, note that
two incomparable prime t-ideals of D are not contained in the same maximal
t-ideal. Thus, R is a ring (resp., an independent ring) of Krull type when D is
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a ring (resp., an independent ring) of Krull type. Finally, if htP = 1 (resp., DP

is a rank-one DVR), then htQ = 1 (resp., RQ is a rank-one DVR). Thus, if D is
a generalized Krull domain (resp., Krull domain), then R is also a generalized
Krull domain (resp., Krull domain). �

Let T (D) be the set of t-invertible fractional t-ideals of an integral domain
D and Prin(D) be the set of nonzero principal fractional ideals of D. Then
T (D) is an abelian group under the t-multiplication I ∗ J = (IJ)t [7, Lemme
1] and Prin(D) is a subgroup of T (D). Let Cl(D) = T (D)/Prin(D) be the
factor group of T (D) modulo Prin(D). For I ∈ T (D), let cl(I) ∈ Cl(D) denote
the equivalence class of T (D) containing I. Hence, cl(I) = cl(J) if and only
if I = xJ for some 0 6= x ∈ K, and cl(I) + cl(J) = cl((IJ)t) in Cl(D) for all
I, J ∈ T (D). We say that Cl(D) is the class group of D. The notion of class
groups was introduced by Bouvier in [7]. Let Inv(D) be the set of invertible
fractional ideals of D. It is easy to see that Inv(D) is a subgroup of T (D)
containing Prin(D), and thus Pic(D) = Inv(D)/Prin(D) is a subgroup of
Cl(D) and called the Picard group or the ideal class group of D.

Clearly, if D is a Krull domain, then Cl(D) is the usual divisor class group of
D (see Remark 1.10), and if D is a Dedekind domain or a Prüfer domain, then
Cl(D) is the ideal class group of D, i.e., Cl(D) = Pic(D) [7, Lemme 3]. The
notion of the class group of D is very useful when we study the factorization
properties of D. For example, a UFD (resp., GCD-domain, Bezout domain)
is just a Krull domain (resp., PvMD, Prüfer domain) with Cl(D) = {0} [16,
Proposition 6.1] (resp., [8, Corollary 1.5]). In fact, Cl(D) measures how far
from a UFD (resp., GCD-domain) a Krull domain (resp., PvMD) is.

Remark 1.10. (1) Let D be an integral domain and D(D) be the set of divisor
classes of D, i.e., D(D) = {A | A ∈ F(D) and Av = A}. Clearly, D(D) is
a commutative semigroup under A ⊕ B = (AB)v for all A,B ∈ D(D), and
Prin(D) is a subgroup of D(D). Moreover, D(D) is a group if and only if D
is completely integrally closed (c.i.c.) [17, Theorem 34.3]. The divisor class
group of a c.i.c. domain D is defined by the factor group D(D)/Prin(D) of
D(D) modulo Prin(D). It is well known that (i) a Krull domain is completely
integrally closed and (ii) D is a Krull domain if and only if every nonzero ideal
of D is t-invertible, and in this case, t = v, i.e., Iv = It for all I ∈ F(D). Thus,
if D is a Krull domain, then Cl(D) = D(D)/Prin(D).

(2) Let V (D) be the set of v-invertible fractional v-ideals of D. Then V (D)
is an abelian group under the v-multiplication I ∗ J = (IJ)v and Prin(D) is
a subgroup of V (D). Hence, the factor group Clv(D) = V (D)/Prin(D) of
V (D) modulo Prin(D) is an abelian group. In particular, if D is c.i.c. (e.g.,
a Krull domain), then Clv(D) is the divisor class group of D. Furthermore,
note that a t-invertible t-ideal is a v-invertible v-ideal, so Cl(D) is a subgroup
of Clv(D). However, Clv(D) 6= Cl(D) in general. For example, if D is a
rank-one nondiscrete valuation domain with value group G ( R, then Cl(D) =
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{0} ( R/G = Clv(D) [3, Theorem 2.7]. Thus, the divisor class group of Krull
domains can be generalized to arbitrary integral domains in at least two ways.

(3) There is another symbol used for the class group of integral domains
in order to distinguish the divisor class group of c.i.c. domains and the class
group of general integral domains. It is Clt(D) and called the t-class group of
D.

(4) Let A and B be integral domains. We mean by Cl(A) = Cl(B) that
there is a group isomorphism from Cl(A) onto Cl(B). It is well known that
Cl(D[{Xα}]) = Cl(D) if and only if D is integrally closed [14, Corollary 2.13].

2. The ring D[{xi, yi, ui, vi}] with xivi = yiui

Throughout D denotes an integral domain with quotient field K, Λ is a
nonempty index set, and Z(Λ) is the direct sum of Λ-copies of the additive
group of integers. Let {Xi, Yi, Ui, Vi | i ∈ Λ} (simply, {Xi, Yi, Ui, Vi}) be a set
of indeterminates over D, D[{Xi, Yi, Ui, Vi}] be the polynomial ring over D,
({XiVi − YiUi}) be the prime ideal of D[{Xi, Yi, Ui, Vi}] generated by {XiVi −
YiUi | i ∈ Λ}, and R = D[{Xi, Yi, Ui, Vi}]/({XiVi − YiUi}). Hence, if we let
xi, yi, ui, vi be the images of Xi, Yi, Ui, Vi in R, respectively, then

R = D[{xi, yi, ui, vi}] with xivi = yiui for all i ∈ Λ

and RD\{0} = K[{xi, yi, ui, vi}]. Let S (resp., T ) be the multiplicative set
of R generated by {xi | i ∈ Λ} (resp., {vi | i ∈ Λ}). Clearly, {xi, yi, ui},
{xi, yi, uixi }, {vi, yi, ui}, and {vi, yi, uivi } are algebraically independent sets over
D, respectively,

• RS = D[{xi, yi, uixi }]S = D[{xi, yi, ui}]S ,

• RT = D[{vi, yi, uivi }]T = D[{vi, yi, ui}]T , and

D[{xi, yi, ui}] ∪D[{vi, yi, ui}] ⊆ R ⊆ D[{xi, yi, uixi }] ∩D[{vi, yi, uivi }].
Let {aα} be a subset of an integral domain A. We denote by 〈{aα}〉 the

multiplicative set of A generated by {aα}. In this section, we study some
ring-theoretic properties of the ring R.

Lemma 2.1. Let R = D[{xi, yi, ui, vi}] and I a nonzero fractional ideal of D.

(1) (IR)−1 = I−1R, and hence (IR)v = IvR.
(2) (IR)t = ItR.
(3) I is t-invertible if and only if IR is t-invertible.
(4) I is a prime t-ideal of D if and only if IR is a prime t-ideal of R.
(5) If I is a prime ideal, then RIR = DI({xi, yi, ui}).
(6) If I is a t-invertible height-one prime ideal, then ht(IR) = 1.

Proof. (1) Clearly, I−1R ⊆ (IR)−1. For the reverse containment, let h ∈
(IR)−1. Then hI ⊆ R ⊆ D[{xi, yi, uixi }]∩K[{xi, yi, ui, vi}]. Since {xi, yi, uixi } are

algebraically independent over D, h ∈ (ID[{xi, yi, uixi }])
−1 = I−1D[{xi, yi, uixi }]
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[20, Lemma 4.1]. Also, h ∈ K[{xi, yi, ui, vi}]. Note that ui = xi · uixi and

vi = yi · uixi ; so

h({xi, yi, ui, vi}) = h({xi, yi, xi
ui
xi
, yi

ui
xi
}) ∈ I−1D[{xi, yi,

ui
xi
}],

and since {xi, yi, uixi } is a set of indeterminates over D, the coefficients of h

must be in I−1. Thus, h ∈ I−1R.
(2) If A is a nonzero finitely generated subideal of IR, there is a nonzero

finitely generated subideal J of I such that A ⊆ JR. Hence, by (1), Av ⊆
(JR)v = JvR ⊆ ItR, and thus (IR)t ⊆ ItR. For the reverse containment, let
0 6= a ∈ It. Then a ∈ Hv for some nonzero finitely generated subideal H of I,
and hence a ∈ HvR = (HR)v ⊆ (IR)t. Thus, It ⊆ (IR)t, and so ItR ⊆ (IR)t.

(3) By (1) and (2), ((IR)(IR)−1)t = ((IR)(I−1R))t = (II−1)tR. Also,
it is clear that (II−1)tR ∩ K = (II−1)t. Thus, (II−1)t = D if and only if
((IR)(IR)−1)t = R.

(4) Let S = 〈{xi}〉. It is clear that if I ⊆ D, then IRS ∩R = IR. Hence, I
is a prime ideal of D if and only if ID[{xi, yi, ui}]S = IRS is a prime ideal, if
and only if IR is a prime ideal. Thus, the result follows from (2).

(5) By the proof of (4), IR is a prime ideal of R. Hence, if S = 〈{xi}〉, then

RIR = D[{xi, yi, ui, vi}]ID[{xi,yi,ui,vi}] = (D[{xi, yi, ui}]S)ID[{xi,yi,ui}]S

= D[{xi, yi, ui}]ID[{xi,yi,ui}] = DI({xi, yi, ui}).

(6) By (5), RIR = DI({xi, yi, ui}), and since DI is a rank-one DVR, RIR is
also a rank-one DVR [17, Proposition 18.7]. Thus, ht(IR) = 1. �

Let S be a multiplicative set of D and I be a nonzero fractional ideal of
D. It is known that if IDS is a t-ideal of DS , then IDS ∩D is a t-ideal of D
(Lemma 1.2(5)). Thus, if I is a maximal t-ideal of D, then IDS is a t-ideal of
DS if and only if IDS is a maximal t-ideal.

Lemma 2.2. Let R = D[{xi, yi, ui, vi}], S = 〈{xi}〉, and T = 〈{vi}〉.
(1) (xi, vj)v = R for all i, j ∈ Λ.
(2) If A is a nonzero fractional t-ideal of R, then A = ARS ∩ART .
(3) R = RS ∩RT .
(4) If Q is a maximal t-ideal of R, either QS or QT is a maximal t-ideal.
(5) (xk, yk) is a t-invertible height-one prime ideal of R for all k ∈ Λ.

Proof. (1) Let k ∈ Λ. Clearly, xkD[xk, yk, uk, vk] = (Xk, YkUk)/(XkVk−YkUk);
vkD[xk, yk, uk, vk] = (Vk, YkUk)/(XkVk−YkUk); and (Xk, YkUk)∩(Vk, YkUk) =
(XkVk, YkUk) in D[Xk, Yk, Uk, Vk] because Xk, Vk are algebraically independent
over D[Yk, Uk]. Thus,

xkD[xk, yk, uk, vk] ∩ vkD[xk, yk, uk, vk] = xkvkD[xk, yk, uk, vk],

and hence ((xk, vk)D[xk, yk, uk, vk])t = D[xk, yk, uk, vk]. Hence, (xk, vk)v =
R by Lemma 2.1(2) because R = D[xk, yk, uk, vk][{xi, yi, ui, vi | i 6= k}].
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Also, note that if i 6= j, then vj is transcendental over D[xi, yi, ui, vi]. Thus,
(xi, vj)v = R.

(2) Clearly, A ⊆ ARS ∩ ART . For the reverse containment, let 0 6= h ∈
ARS ∩ ART . Then h = f

s = g
z for some s ∈ S, z ∈ T and f, g ∈ A ⇒

zf = sg ∈ sR ∩ zR = szR (because (s, z)v = R by (1)) ⇒ f = sf1 for some
f1 ∈ R ⇒ f1z = g ∈ A. Thus, h = f1 ∈ (f1s, f1z)v = (f, g)v ⊆ At = A.

(3) This follows directly from (2) above.
(4) Since Q is a maximal t-ideal of R, it suffices to show that (QRS)t ( RS or

(QRT )t ( RT . Assume to the contrary that (QRS)t = RS and (QRT )t = RT .
Then there is a nonzero finitely generated ideal A of R such that A ⊆ Q and
RS = (ARS)−1 = A−1RS and RT = A−1RT . Hence, A−1 ⊆ RS ∩ RT = R,
and thus R = Av ⊆ Qt ⊆ R. Thus, Qt = R, a contradiction.

(5) Let Q = (xk, yk) be the ideal of R generated by xk, yk. Then vk
yk

= uk
xk
∈

Q−1, and hence (xk, vk) ⊆ QQ−1. Hence, by (1), R = (xk, vk)v ⊆ (QQ−1)t ⊆
R, and thus (QQ−1)t = R. Next, if P = (xk, yk)D[xk, yk, uk, vk], then

P = (Xk, Yk)/(XkVk − YkUk) ( D[Xk, Yk, Uk, Vk]/(XkVk − YkUk),

and since ht(Xk, Yk) = 2 as a prime ideal of D[Xk, Yk, Uk, Vk], P is a height-one
prime ideal. Note that

Q = PD[xk, yk, uk, vk][{xi, yi, ui, vi | i 6= k}];
so P is t-invertible by Lemma 2.1(3). Thus, Q is a height-one prime ideal of R
by Lemma 2.1(6). �

We next give the structure of prime t-ideals of D[{xi, yi, ui, vi}] when D is
a PvMD. This result is very useful when we study the (independent) rings of
Krull type property of D[{xi, yi, ui, vi}].
Proposition 2.3. Let D be a PvMD and R = D[{xi, yi, ui, vi}].

(1) R is a PvMD.
(2) If A is a t-ideal of R such that A ⊆ R and A∩D 6= (0), then A∩D is

a t-ideal of D and A = (A ∩D)R.
(3) If Q ∈ t-Max(R) with Q∩D = (0), then htQ = 1 and Q is t-invertible.
(4) t-Spec(R) = {PR | P ∈ t-Spec(D)} ∪ {Q ∈ t-Max(R) | Q ∩D = (0)}.
(5) t-Max(R) = {PR | P ∈ t-Max(D)} ∪ {Q ∈ t-Max(R) | Q ∩D = (0)}.
(6) If D is a field, then R is a Krull domain.

Proof. Let S = 〈{xi}〉 and T = 〈{vi}〉. And recall that RS = D[{xi, yi, ui}]S
and RT = D[{vi, yi, ui}]T .

(1) Since D is a PvMD and {xi, yi, ui} are algebraically independent over
D, by Theorem 1.4, both D[{xi, yi, ui}] and D[{vi, yi, ui}] are PvMDs. Hence,
both RS and RT are PvMDs. Let Q be a maximal t-ideal of R. By Lemma
2.2(4), we may assume that QS is a maximal t-ideal of RS . Thus, RQ = (RS)QS
is a valuation domain. Therefore, by Theorem 1.4, R is a PvMD.

(2) Since R is a PvMD, both AS and AT are t-ideals. Note that AS ∩
D[{xi, yi, ui}] is a t-ideal and (AS ∩D[{xi, yi, ui}]) ∩D 6= (0). Note also that
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if 0 6= a ∈ D and f ∈ D[{xi, yi, ui}], then (a, f)v = (aD+ c(f))vD[{xi, yi, ui}];
hence

AS ∩D[{xi, yi, ui}] = (A ∩D)D[{xi, yi, ui}]
and A ∩ D is a t-ideal. Thus, (A ∩ D)R is a t-ideal by Lemma 2.1(2) and
AS = (A∩D)RS . Similarly, AT = (A∩D)RT . Thus, A = AS∩AT = (A∩D)R
by Lemma 2.2(2).

(3) By Lemma 2.2(4), we may assume that QS is a maximal t-ideal of RS ,
and hence Q0 := QS ∩ D[{xi, yi, ui}] is a prime t-ideal of D[{xi, yi, ui}] such
that Q0∩D = (0). Hence, by Lemma 1.3 and Theorem 1.4, htQ0 = 1 and Q0 is
t-invertible. Thus, htQ = htQS = ht(Q0)S = 1 and QS = (Q0)S is t-invertible.
Similarly, QT = RT or QT is t-invertible. Hence, there is a nonzero finitely
generated ideal A of R such that QS = (ARS)t and QT = (ART )t. Since R
is a PvMD, A is t-invertible, whence by Lemma 1.2(3), (ARS)t = AtRS and
(ART )t = AtRT . Thus, Q = At by Lemma 2.2(2), and hence Q is t-invertible.

(4) Let Q be a prime t-ideal of R, and let M be a maximal t-ideal of R
such that Q ⊆ M . If M ∩D = (0), then htM = 1 by (3), and hence Q = M .
Next, assume that M ∩D 6= (0). Then MS = (M ∩D)RS by (2), and hence
QS = (Q ∩ D)RS (cf. Theorem 1.4(6)). By symmetry, QT = (Q ∩ D)RT .
Thus, Q ⊆ (Q ∩D)RS ∩ (Q ∩D)RT = (Q ∩D)R by Lemma 2.2(2), and hence
Q = (Q ∩D)R. The reverse containment follows directly from Lemma 2.1(4).

(5) This follows directly from (4) above.
(6) Let Q be a prime t-ideal of R. If Q′ is a maximal t-ideal of R containing

Q, then Q′ ∩D = (0) by assumption, and hence Q′ is a t-invertible height-one
prime ideal by (3). Thus, Q = Q′, whence Q is t-invertible. Therefore, R is a
Krull domain [25, Theorem 3.6]. �

Corollary 2.4. Let R = D[{xi, yi, ui, vi}].
(1) D is a PvMD if and only if R is a PvMD.
(2) D is a ring (resp., an independent ring) of Krull type if and only if R

is a ring (resp., an independent ring) of Krull type.
(3) D is a generalized Krull domain if and only if R is a generalized Krull

domain.
(4) [16, Corollary 14.7] D is a Krull domain if and only if R is a Krull

domain.
(5) D is a TV-PvMD if and only if R is a TV-PvMD.

Proof. (1) If D is a PvMD, then R is a PvMD by Proposition 2.3(1). Con-
versely, assume that R is a PvMD. Then RS is a PvMD, where S = 〈{xi}〉.
Note that {xi, yi, ui} are algebraically independent over D and

RS = D[{xi, yi, ui}]S = D[{yi, ui}][{xi, x−1
i }].

Thus, D[{yi, ui}], and hence D, is a PvMD by Theorem 1.4.
(2) This follows directly from (1) and Proposition 2.3.
(3) By Proposition 2.3(3)-(4), t-dim(D) = 1, i.e., each prime t-ideal of D is

a maximal t-ideal, if and only if t-dim(R) = 1. Thus, by (2), the result follows.
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(4) By Proposition 2.3, t-Spec(R) = {PR | P ∈ t-Spec(D)} ∪ {Q ∈ t-
Max(R) | Q ∩ D = (0)} and Q is t-invertible for all Q ∈ t-Max(R) with
Q ∩D = (0). Hence, by Lemma 2.1(3), every prime t-ideal of D is t-invertible
if and only if every prime t-ideal of R is t-invertible. Thus, D is a Krull domain
if and only if R is a Krull domain [25, Theorem 3.6].

(5) This follows directly from (2), Lemma 2.1(3), and Proposition 2.3. �

Let A ⊆ B be an extension of integral domains such that B is t-linked over
A. It is known that if I and J are t-invertible t-ideals of A, then

((IJ)tB)t = ((IJ)B)t = ((IB)(JB))t = ((IB)t(JB)t)t

by [4, Proposition 2.1]. Hence, the map ϕ : Cl(A)→ Cl(B) given by ϕ(cl(I)) =
cl((IB)t) is a group homomorphism [4, Theorem 2.2].

Lemma 2.5. Let R = D[{xi, yi, ui, vi}].
(1) R is t-linked over D.
(2) The map ϕ : Cl(D) → Cl(R) given by ϕ(cl(I)) = cl((IR)t) is a group

monomorphism.

Proof. (1) If I is a nonzero finitely generated ideal of D such that I−1 = D,
then (IR)−1 = I−1R = R by Lemma 2.1(1). Thus, R is t-linked over D.

(2) By (1), R is t-linked over D, and thus ϕ is a group homomorphism.
Next, let I be a nonzero t-invertible t-ideal of D such that (IR)t = fR for
some f ∈ R and S = 〈{xi}〉. Then (IR)t = IR by Lemma 2.1(2), whence
fD[{xi, yi, ui}]S = fRS = IRS = ID[{xi, yi, ui}]S . Note that

fD[{xi, yi, ui}]S = gD[{xi, yi, ui}]S
for some g ∈ D[{xi, yi, ui}] with xi - g in D[{xi, yi, ui}] for all i ∈ Λ; hence
the previous equality shows that g ∈ D. Thus, I = ID[{xi, yi, ui}]S ∩ D =
gD[{xi, yi, ui}]S ∩D = gD. Hence, ϕ is injective. �

We next give the PvMD analogue of [16, Proposition 14.9] that if D is a
Krull domain, then R = D[{xi, yi, ui, vi}] is a Krull domain with Cl(R) =
Cl(D)⊕ Z(Λ).

Theorem 2.6. If D is a PvMD, Cl(D[{xi, yi, ui, vi}]) = Cl(D)⊕ Z(Λ).

Proof. Let R = D[{xi, yi, ui, vi}]. Then, by Lemma 2.5, the map ϕ : Cl(D)→
Cl(R) given by ϕ(cl(I)) = cl((IR)t) is a group monomorphism.

Now, let D∗ = D \ {0}. Then RD∗ = K[{xi, yi, ui, vi}], and hence RD∗ is
a Krull domain with Cl(RD∗) = Z(Λ) [16, Proposition 14.8]. Let ψ : Cl(R)→
Cl(RD∗) be defined by ψ(cl(A)) = cl(AD∗), then ψ is a group homomorphism,
and since R is a PvMD by Proposition 2.3(1), ψ is surjective. Note that if I is
a nonzero t-invertible t-ideal of D, then ((IR)t)RD∗ = (IRD∗)t = RD∗ ; hence
ψ ◦ ϕ = 0. Let A be a t-invertible t-ideal of R such that AD∗ = fRD∗ for
some 0 6= f ∈ R. Then 1

fAD∗ = RD∗ , and since A is of finite type, there is an

s ∈ D∗ with s 1
fA ⊆ R. Note that s 1

fA∩D 6= (0) and s 1
fA is a t-ideal; hence by
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Proposition 2.3(2), s 1
fA = JR for some t-ideal J of D. Since JR is t-invertible,

J is t-invertible by Lemma 2.1(3). Thus, cl(A) = cl((JR)t) = ϕ(cl(J)), and
therefore we have an exact sequence

0→ Cl(D)→ Cl(R)→ Cl(RD∗)→ 0.

Note that (xi, yi) is a t-invertible prime t-ideal of R by Lemma 2.2(5) and
Cl(RD∗) is generated by {cl((xi, yi)RD∗) | i ∈ Λ} [16, Proof of Proposition
14.8]; so if we define θ : Cl(RD∗)→ Cl(R) by

θ(
∑

kicl(((xi, yi)RD∗))) =
∑

kicl((xi, yi)),

then θ is a well-defined group homomorphism. Clearly, ψ ◦ θ is the iden-
tity function of Cl(RD∗), and hence the exact sequence above is split. Thus,
Cl(R) = Cl(D)⊕ Cl(RD∗) = Cl(D)⊕ Z(Λ). �

Let D be a PvMD (resp., a ring of Krull type, an independent ring of
Krull type, a generalized Krull domain, a Krull domain, a TV-PvMD) with
Cl(D) = {0}, and let R = D[{xi, yi, ui, vi}]. Then R is a PvMD (resp., a ring
of Krull type, an independent ring of Krull type, a generalized Krull domain, a
Krull domain, a TV-PvMD) with Cl(R) = Z(Λ) by Corollary 2.4 and Theorem
2.6. We end this section with some examples of such rings.

Example 2.7. (1) Let D be a non-discrete valuation domain that is not a field.
Then D is an independent ring of Krull type such that Cl(D) = {0} but D is
neither a TV-PvMD nor a Krull domain, and D is a generalized Krull domain
if and only if dim(D) = 1, i.e., each nonzero prime ideal of D is a maximal
ideal.

(2) Let V be a discrete valuation domain of (Krull) dimension ≥ 2. Then V
is a TV-PvMD with Cl(V ) = {0} but not a Krull domain.

(3) Let D be a Prüfer domain with 1 < |Max(D)| < ∞, K be the quotient
field of D, X be an indeterminate over D, and R1 = D + XK[X]. Then R1

is a ring of Krull type, Cl(R1) = Cl(D) = {0}, but R1 is not an independent
ring of Krull type (cf. [11, Section 4] for the proof).

(4) Let {Xα} be a nonempty set of indeterminates over D, and let Nv =
{f ∈ D[{Xα}] | c(f)v = D}. Then Cl(D[{Xα}]Nv ) = {0} [24, Theorem 2.14],
and D is a PvMD (resp., a ring of Krull type, an independent ring of Krull
type, a generalized Krull domain, a Krull domain, a TV-PvMD) if and only if
D[{Xα}]Nv is a Prüfer domain (resp., a Prüfer domain of finite character, an
h-local Prüfer domain, a generalized Krull domain of dimension one, a principal
ideal domain, a Prüfer domain whose nonzero ideals are v-ideals) (cf. Theorem
1.6 and [24]).

3. The class group of rings of Krull type

Let D be an integral domain with quotient field K, X be an indeterminate
over D, and D[X] be the polynomial ring over D. For 0 6= f ∈ D[X] that is
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irreducible in K[X], let Qf = fK[X]∩D[X]. Hence, Qf is a height-one prime
ideal (so a t-ideal) of D[X] such that Qf ∩D = (0).

The next result is already well known for Krull domains ([10, Proposition 4]
or [16, Theorem 14.3]).

Lemma 3.1. Let D be a ring of Krull type and I be a t-invertible t-ideal of D.

(1) I−1 = (a, b)v for some 0 6= a, b ∈ K.
(2) For f = aX + b ∈ K[X] with I = (a, b)−1, let Qf = fK[X] ∩ D[X].

Then Qf is a t-invertible t-ideal of D[X] such that cl(ID[X]) = cl(Qf ).
(3) Every class of Cl(D[X]) contains a prime ideal of the form Qf for

some f = aX + b ∈ D[X].

Proof. (1) If 0 6= d ∈ I, then dI−1 ⊆ D. Let 0 6= c ∈ dI−1. Then, since D
is of finite t-character, there are only finitely many maximal t-ideals of D, say,
P1, . . . , Pn that contain c. Let S = D \

⋃n
i=1 Pi. Since dI−1 is t-invertible,

dI−1DS is invertible, and hence dI−1DS = eDS for some 0 6= e ∈ dI−1. Thus,
dI−1 = (c, e)v or I−1 = ( cd ,

e
d )v.

(2) Note that Qf = fK[X] ∩D[X] = fc(f)−1[X] = fID[X]. Since D is a
PvMD, I is t-invertible. Thus, Qf is t-invertible and cl(Qf ) = cl(ID[X]).

(3) Let A be a t-invertible t-ideal of D[X]. Then we may assume that
A ⊆ D[X]. If A∩D 6= (0), then A = (A∩D)D[X] [22, Lemma 4.5] and A∩D
is a t-invertible t-ideal. Next, if A∩D = (0), then there are 0 6= h ∈ D[X] and
a fractional t-ideal J of D such that A = hJD[X] [22, Lemma 4.5]. Since A
is t-invertible, J is also t-invertible. Thus, the result follows directly from (1)
and (2). �

Nagata theorem states that if D is a Krull domain and if ∆ is a set of
height-one prime ideals of D, then R =

⋂
P∈∆DP is a Krull domain with

Cl(R) = Cl(D)/H, where H is the subgroup of Cl(D) generated by {cl(P ) |
P ∈ X1(D) \ ∆} [16, Theorem 7.1]. The next result is a partial analogue of
rings of Krull type (cf. [10, The proof of Proposition 5] for Krull domains).

Theorem 3.2. Let D be a ring of Krull type, H be a subgroup of Cl(D),
U be the set of all linear polynomials f ∈ D[X] such that cl(Qf ) ∈ H, Ω =
t-Max(D[X]) \ {Qf | f ∈ U}, and R =

⋂
Q∈ΩD[X]Q.

(1) R is t-linked over D[X].
(2) R = D[X]Nv ∩K[X]〈U〉, where Nv = {f ∈ D[X] | c(f)v = D} and 〈U〉

is the multiplicative set of D[X] generated by U .
(3) t-Max(R) = {PD[X]Nv ∩ R | P ∈ t-Max(D)} ∪ {fK[X]〈U〉 ∩ R | f is

irreducible in K[X] but f 6∈ U}.
(4) R is a ring of Krull type and Cl(R) = Cl(D)/H.

Proof. (1) Since D is a PvMD, D[X] is a PvMD. Thus, R is t-linked over D[X]
[24, Theorem 3.8].
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(2) Let ∆ = {f ∈ D[X] | fK[X] is a prime ideal and f 6∈ U}, and note that
t-Max(D[X]) = {P [X] | P ∈ t-Max(D)} ∪ {Qf | f ∈ ∆ ∪ U}. Then

R = (
⋂

P∈t-Max(D)

D[X]P [X]) ∩ (
⋂
f∈∆

D[X]Qf ) = D[X]Nv ∩K[X]〈U〉.

(3) Note that R = D[X]Nv ∩K[X]〈U〉 by (2); so RPD[X]Nv∩R = D[X]P [X]

for all P ∈ t-Max(D) and RfK[X]〈U〉∩R = D[X]Qf for all f ∈ ∆. Hence, the

intersection R =
⋂
Q∈ΩD[X]Q is locally finite. Thus, the result follows (cf. the

proof of Theorem 1.6).
(4) R is t-linked over D[X] by (1), and D is a ring of Krull type if and only

if D[X] is a ring of Krull type by Theorem 1.6. Thus, if D is a ring of Krull
type, then R is a ring of Krull type by Lemma 1.9. Hence, it suffices to show
that Cl(R) = Cl(D)/H.

Since R is t-linked over D[X], the map ϕ : Cl(D[X]) → Cl(R) given by
ϕ(cl(A)) = cl((AR)t) is a group homomorphism. We first show that ϕ is
surjective. Let B be a t-invertible t-ideal of R. We may assume that B ⊆ R.
Then B = (u1, . . . , uk)v for some ui ∈ R ⊆ D[X]Nv , and hence there is an
h ∈ Nv such that hui ⊆ D[X] for i = 1, . . . , k. Let A = ((hu1, . . . , huk)D[X])t.
Then A is a t-invertible t-ideal of D[X] and hB = (AR)t. Thus, ϕ(cl(A)) =
cl(B).

Next, we show that ker(ϕ) = H. Note that H = {cl(Qf ) | f ∈ U} by
Lemma 3.1; hence H ⊆ ker(ϕ) because (QfR)t =

⋂
Q∈ΩQfD[X]Q = R for

all f ∈ U by (3) and [24, Theorem 3.5]. Conversely, assume that A is a t-
invertible t-ideal of D[X] such that (AR)t is principal. Since D is a PvMD,
there are a u ∈ K(X) and a t-invertible t-ideal I of D such that A = uID[X].
Since I−1 = (a, b)v for some 0 6= a, b ∈ K, if we let h = aX + b, then Qh =
hID[X], and so cl(A) = cl(Qh) and (QhR)t is principal. Note that RD\{0} =

K[X]〈U〉; hence ((QhR)t)D\{0} = hK[X]〈U〉, and thus (QhR)t = hf
g R for some

f, g ∈ 〈U〉. Note also that Max(D[X]Nv ) = {PD[X]Nv | P ∈ t-Max(D)}
[24, Proposition 2.1]; so D[X]Nv = ((QhR)t)Nv = hf

g D[X]Nv , and thus c(g)t =

c(hf)t = (c(h)c(f))t. Hence, if we let f = f1 · · · fn and g = g1 · · · gm for fi, gj ∈
U , then (c(g1) · · · c(gm))t = (c(h)c(f1) · · · c(fn))t or (c(g1)−1 · · · c(gm)−1)t =
(c(h)−1c(f1)−1 · · · c(fn)−1)t. Thus,∑

i

cl(Qgi) =
∑
i

cl(c(gi)
−1[X])

= cl((c(g1)−1 · · · c(gm)−1)t[X])

= cl((c(h)−1c(f1)−1 · · · c(fn)−1)t[X])

= cl(c(h)−1[X]) +
∑
i

cl(c(fi)
−1[D])

= cl(Qh) +
∑
j

cl(Qfj ).
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Therefore, cl(A) = cl(Qh) =
∑
i cl(Qgi)−

∑
j cl(Qfj ) ∈ H. �

We say that a nonzero ideal I of D is t-locally principal if IDP is principal for
all P ∈ t-Max(D). It is known that a t-invertible ideal is t-locally principal, and
if D is of finite t-character, then a nonzero t-locally principal ideal is t-invertible
[9, Corollary 2.2].

Corollary 3.3. Let the notation be as in Theorem 3.2. Then D is a ring
of Krull type (resp., an independent ring of Krull type, a generalized Krull
domain, a Krull domain, a TV-PvMD) if and only if R is.

Proof. It is known that D is a ring of Krull type (resp., an independent ring of
Krull type, a generalized Krull domain, a Krull domain, a TV-PvMD) if and
only if D[X] is (Theorem 1.6 and Corollary 1.8).

(⇒) Since R is t-linked over D[X] by Theorem 3.2(1), R is a ring of Krull
type (resp., an independent ring of Krull type, a generalized Krull domain, a
Krull domain) by Lemma 1.9. For the TV-PvMD property, assume that D is
a TV-PvMD. Then D, and hence R, is an independent ring of Krull type and
t-Max(R) = {PD[X]Nv ∩R | P ∈ t-Max(D)}∪{fK[X]〈U〉∩R | f is irreducible
in K[X] but f 6∈ U}; RPD[X]Nv∩R = D[X]PD[X] for all P ∈ t-Max(D); and
RfK[X]〈U〉∩R = K[X]fK[X] for all f ∈ D[X] that is irreducible in K[X] but
f 6∈ U . Hence, each maximal t-ideal Q of R is t-locally principal, and thus Q
is t-invertible. Therefore, R is a TV-PvMD.

(⇐) Note that D[X]Nv = RNv ; so D[X]Nv is t-linked over R. Thus, D[X]Nv
is a ring of Krull type (resp., an independent ring of Krull type, a generalized
Krull domain, a Krull domain), and so is D. Now, assume that R is a TV-
PvMD. Then D is an independent ring of Krull type by the previous sentence.
Note that RPD[X]Nv∩R = D[X]PD[X] = D[X]NvPD[X]Nv

for all P ∈ t-Max(D).

Hence, if P is a maximal t-ideal of D, then PD[X]Nv is t-locally principal,
and since D[X]Nv is of finite t-character, PD[X]Nv is t-invertible. Since each
maximal ideal of D[X]Nv is a t-ideal [24, Corollary 2.3], PD[X]Nv is invertible.
Thus, P is t-invertible [24, Corollary 2.5]. Therefore, D is a TV-PvMD. �

Corollary 3.4. Let G an abelian group. Then the following statements hold.

(1) There is a ring of Krull type D such that Cl(D) = G but D is not an
independent ring of Krull type.

(2) There is an independent ring of Krull type D such that Cl(D) = G but
D is neither a generalized Krull domain nor a TV-PvMD.

(3) There is a generalized Krull domain D such that Cl(D) = G but D is
not a Krull domain.

(4) There is a TV-PvMD D such that Cl(D) = G but D is not a Krull
domain.

Proof. Since G is an abelian group, there is an index set Λ such that G =
Z(Λ)/H for some subgroup H of Z(Λ). Let D be a ring of Krull type (resp., a
generalized Krull domain, a TV-PvMD) that is not an independent ring of Krull
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type (resp., a Krull domain, a Krull domain) and Cl(D) = {0} (cf. Example
2.7). Then, by Corollary 2.4, Theorems 2.6 and 3.2, and Corollary 3.3, we can
use D to construct a ring of Krull type (resp., a generalized Krull domain, a
TV-PvMD) R such that Cl(R) = G but R is not an independent ring of Krull
type (resp., a Krull domain, a Krull domain). The same argument also shows
that there is an independent ring of Krull type R such that Cl(R) = G but R
is neither a generalized Krull domain nor a TV-PvMD. �

Let {Xα} be a nonempty set of indeterminates over D and Nv = {f ∈
D[{Xα}] | c(f)v = D}. It is known that Cl(D[{Xα}]Nv ) = {0}, and D is a
PvMD if and only if D[{Xα}]Nv is a Prüfer domain. We next show that if D is a
PvMD, then there is a Prüfer domain R such that D[{Xα}] ⊆ R ⊆ D[{Xα}]Nv
and Cl(R) = Cl(D). For this, let S be a saturated multiplicative set of D, and
let N(S) = {d ∈ D | (d, s)v = D for all s ∈ S}. We say that S is splitting if
each nonzero d ∈ D can be written as d = sz for some s ∈ S and z ∈ N(S). It
is known that if S is splitting, then Cl(D) = Cl(DS)⊕Cl(DN(S)) [1, Corollary
3.8] and ADS is a t-ideal for all t-ideals A of D [1, Corollary 3.5].

Theorem 3.5. Let S be the saturated multiplicative set of D[{Xα}] generated
by all nonconstant prime polynomials, and R = D[{Xα}]S.

(1) S is a splitting set such that c(f)v = D for all f ∈ S.
(2) Cl(D) = Cl(R) if and only if D is integrally closed.
(3) t-Max(R)={PD[{Xα}]S | P ∈ t-Max(D)}∪{QS | Q∈ t-Max(D[{Xα}]),

Q ∩D = (0) and Q ∩ S = ∅}.
(4) If |{Xα}| =∞, then t-Max(R) = Max(R).
(5) If |{Xα}| =∞, then D is a PvMD if and only if R is a Prüfer domain.
(6) R = D[{Xα}]Nv ∩K[{Xα}]S, where Nv = {f ∈ D[{Xα}] | c(f)v = D}.

Proof. (1) If g is a nonconstant prime polynomial of D[{Xα}], then gD[{Xα}]
is a maximal t-ideal. Hence, g 6∈ PD[{Xα}] for all P ∈ t-Max(D), and thus
c(g)v = D. Thus, if f ∈ S, then f is a finite product of such prime polynomials,
and thus c(f)v = D. Next, note that K[{Xα}] is a UFD; so

∞⋂
n=1

(f1 · · · fn)D[{Xα}] ⊆
∞⋂
n=1

(f1 · · · fn)K[{Xα}] = (0)

for distinct prime elements {f1, . . . , fn, . . . } ⊆ S. Also,
⋂∞
n=1 f

nD[{Xα}] = (0)
for f ∈ D[{Xα}]\D. Thus, S is a splitting set of D[{Xα}] [1, Proposition 2.6].

(2) Let N(S) = {h ∈ D[{Xα}] | (h, f)v = D[{Xα}] for all f ∈ S}. Then
D\{0} ⊆ N(S) because c(f)v = D for all f ∈ S by (1). Hence, D[{Xα}]N(S) =
K[{Xα}]N(S), and so D[{Xα}]N(S) is a UFD. Hence,

Cl(D[{Xα}]) = Cl(D[{Xα}]S)⊕ Cl(D[{Xα}]N(S)) = Cl(R).

Thus, Cl(D) = Cl(R) if and only if Cl(D) = Cl(D[{Xα}]), if and only if D is
integrally closed [14, Corollary 2.13].



168 G. W. CHANG

(3) Recall that t-Max(D[{Xα}]) = {PD[{Xα}] | P ∈ t-Max(D)} ∪ {Q ∈ t-
Max(D[{Xα}]) | Q ∩D = (0)}. Also, since S is a splitting set, (AR)t = AtR
for all nonzero ideals A of D[{Xα}] [1, Corollary 3.5]. Thus, the result follows.

(4) It suffices to show that if Q is a nonzero prime ideal of D[{Xα}] such
that Qt = D[{Xα}], then Q ∩ S 6= ∅. Note that c(Q)t = D, and hence there is
an f ∈ Q such that c(f)v = D.

Case 1. Q ∩D 6= (0). Choose 0 6= a ∈ Q ∩D. Since |{Xα}| = ∞, there is
an X ∈ {Xα} such that X does not appear in f . Clearly, (a, f)v = D[{Xα}],
and so if we let g = aX + f , then g ∈ Q and g is a prime element of D[{Xα}].

Case 2. Q ∩ D = (0). Then QD\{0} is a prime ideal of K[{Xα}] and
ht(QD\{0}) ≥ 2. Note that K[{Xα}] is a UFD. Hence, there is an 0 6= h ∈ Q
such that hK[{Xα}] is a prime ideal and f 6∈ hK[{Xα}]. Clearly, (f, h)v =
D[{Xα}]. Choose X ∈ {Xα} such that X does not appear in both f and h,
and let g = hX + f . Then g ∈ Q ∩ S.

(5) (⇒) Let M be a maximal ideal of R. Then M ∩D[{Xα}] is a maximal
t-ideal of D[{Xα}] by (4) above, and hence D[{Xα}]M∩D[{Xα}] is a valuation
domain by Theorem 1.4. Note that D[{Xα}]M∩D[{Xα}] ⊆ RM ; so RM is a
valuation domain. Thus, R is a Prüfer domain. (⇐) By (1), S ⊆ Nv, and
hence R ⊆ D[{Xα}]Nv . Since R is a Prüfer domain, D[{Xα}]Nv is a Prüfer
domain [17, Theorem 26.1]. Thus, D is a PvMD by Theorem 1.4.

(6) Let Ω be the set of all maximal t-ideals Q of D[{Xα}] such that Q∩D =
(0) and Q ∩ S = ∅. Then

D[{Xα}]Q = (D[{Xα}]S)QD[{Xα}]S = (K[{Xα}]S)QK[{Xα}]S

for all Q ∈ Ω, and thus

R = (
⋂

P∈t-Max(D)

D[{Xα}]PD[{Xα}]) ∩ (
⋂
Q∈Ω

D[{Xα}]Q)

= D[{Xα}]Nv ∩K[{Xα}]S
(cf. [24, Proposition 2.1] for the last equality). �

An integral domain D is called a divisorial domain if every nonzero ideal
of D is a v-ideal. Since an invertible ideal is a t-invertible t-ideal, a Prüfer
domain that is a TV-PvMD is a divisorial domain. In [21], Heinzer showed
that (i) if D is a divisorial domain, then D is an h-local domain and (ii) if D
is integrally closed, then D is a divisorial domain if and only if D is an h-local
Prüfer domain whose nonzero maximal ideals are invertible. It is clear that a
Dedekind domain is an integrally closed divisorial domain.

Corollary 3.6. Let the notation be as in Theorem 3.5, and assume |{Xα}| =
∞. Then the following statements hold.

(1) D is a ring of Krull type if and only if R is a Prüfer domain of finite
character.

(2) D is an independent ring of Krull type if and only if R is an h-local
Prüfer domain.
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(3) D is a generalized Krull domain if and only if R is a generalized Krull
domain of (Krull) dimension one.

(4) D is a Krull domain if and only if R is a Dedekind domain.
(5) D is a TV-PvMD if and only if R is an integrally closed divisorial

domain.
(6) D is a UFD if and only if R is a principal ideal domain.

Proof. Let Q be a maximal t-ideal of D[{Xα}] such that Q ∩D = (0). Then
htQ = 1 and Q is t-invertible by Lemma 1.3, and hence D[{Xα}]Q is a rank-one
DVR. Note that K[{Xα}] is a UFD; so each nonzero nonunit of D[{Xα}] is con-
tained in only finitely many such maximal t-ideals. Also, note that D[{Xα}]Nv
is a Prüfer domain, Max(D[{Xα}]Nv ) = {PD[{Xα}]Nv | P ∈ t-Max(D)}, and
each prime ideal of D[{Xα}]Nv is extended from D [24, Proposition 2.1, Theo-
rems 3.1 and 3.7]. Thus, the result follows directly from Theorem 3.5 (cf. the
proof of Corollary 3.3). �

Corollary 3.7. Let G an abelian group. Then the following statements hold.

(1) There is a Prüfer domain of finite character D such that Cl(D) = G
but D is not an h-local Prüfer domain.

(2) There is an h-local Prüfer domain D such that Cl(D) = G but D is
neither a generalized Krull domain nor a divisorial domain.

(3) There is a generalized Krull domain of dimension one D such that
Cl(D) = G but D is not a Dedekind domain.

(4) There is a Prüfer domain D in which each nonzero ideal is a v-ideal
(i.e., an integrally closed divisorial domain) such that Cl(D) = G but
D is not a Dedekind domain.

Proof. This follows directly from Theorem 3.5, Corollaries 3.4 and 3.6. �

Let {Xα} be an infinite set of indeterminates over a PvMD D, S be the
multiplicative set of D[{Xα}] generated by all nonconstant prime polynomials,
and R = D[{Xα}]S . In Theorem 3.5, we show that R is a PvMD with Cl(R) =
Cl(D) by using the fact that {Xα} is infinite. Hence, we have the following
question.

Question 3.8. Let D be a PvMD, X be an indeterminate over D, and D[X]
be the polynomial ring over D. Is there a multiplicative set T of D[X] such
that D[X]T is a Prüfer domain with Cl(D[X]T ) = Cl(D)?
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multiplication domains and class groups, J. Algebra 319 (2008), no. 1, 272–295.

https://doi.org/10.1016/j.jalgebra.2007.10.006

[4] D. D. Anderson, E. G. Houston, and M. Zafrullah, t-linked extensions, the t-class group,
and Nagata’s theorem, J. Pure Appl. Algebra 86 (1993), no. 2, 109–124. https://doi.

org/10.1016/0022-4049(93)90097-D

[5] D. F. Anderson and A. Ryckaert, The class group of D + M , J. Pure Appl. Algebra 52
(1988), no. 3, 199–212. https://doi.org/10.1016/0022-4049(88)90091-6

[6] J. T. Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc.
24 (1970), 556–562. https://doi.org/10.2307/2037408

[7] A. Bouvier, Le groupe des classes d’un anneau integre, 107 eme Congres des Societes

Savantes, Brest fasc. IV (1982), 85–92.
[8] A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc.
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