• 제목/요약/키워드: G2-checkpoint activation

검색결과 5건 처리시간 0.017초

Kaempferol Activates G2-Checkpoint of the Cell Cycle Resulting in G2-Arrest and Mitochondria-Dependent Apoptosis in Human Acute Leukemia Jurkat T Cells

  • Kim, Ki Yun;Jang, Won Young;Lee, Ji Young;Jun, Do Youn;Ko, Jee Youn;Yun, Young Ho;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.287-294
    • /
    • 2016
  • The effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2-arrest of the cell cycle. Under these conditions, apoptotic events, including upregulation of Bak and PUMA levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -8, and -3, anti-poly (ADP-ribose) polymerase (PARP) cleavage, and accumulation of apoptotic sub-G1 cells, were induced without accompanying necrosis. However, these apoptotic events, except for upregulation of Bak and PUMA levels, were completely abrogated in J/Bcl-xL cells overexpressing Bcl-xL, suggesting that the G2-arrest and the Bcl-xL-sensitive mitochondrial apoptotic events were induced, in parallel, as downstream events of the DNA-damage-mediated G2-checkpoint activation. Together these results demonstrate that kaempferol-mediated antitumor activity toward Jurkat T cells was attributable to G2-checkpoint activation, which caused not only G2-arrest of the cell cycle but also activating phosphorylation of p53 (Ser-15) and subsequent induction of mitochondria-dependent apoptotic events, including Bak and PUMA upregulation, Bak activation, Δψm loss, and caspase cascade activation.

Depletion of the Pre-RC Proteins Induces Chk1/Chk2 Independent Checkpoint Responses and Apoptotic Cell Death in HeLa Cells

  • Im, Jun-Sub;Lee, Joon-Kyu
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.129-134
    • /
    • 2007
  • The initiation of eukaryotic DNA replication requires assembly of the pre-replicative complex (Pre-RC) through the concerted action of Orc, Cdc6, Cdt1 and Mcm2-7 complex during G1 phase. The pre-RC assembly licenses individual replication origins for the initiation of DNA replication and sufficient number of the pre-RC is essential for proper progression of S phase. However, it is not well known how cells recognize the completion of the pre-RC assembly before G1-S transition. In order to understand the cellular responses to the defects in pre-RC assembly, we depleted the known components of pre-RC proteins using the small interference RNAs in HeLa cells. Although the defects of pre-RC assembly by the depletion of the pre-RC proteins such as Orc2, Cdt1, Mcm2 & Mcm10 did not elicit the activation of Chk1- or Chk2-dependent checkpoint pathways, these cells still showed significant decrease in the cellular level of Cdc25A proteins. These results suggests that a novel checkpoint pathway exist in HeLa cells, which is not dependent upon Chk1 or Chk2 proteins and play essential roles in the cellular responses to the defects in the pre-RC assembly. Also, among those four proteins tested in this study, the depletion of Mcm10 and Cdt1 proteins significantly increased the apoptotic cell death in HeLa cells, suggesting that these proteins not only play roles in the pre-RC assembly, but also are involved in the checkpoint responses to the defects in the pre-RC assembly.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Iron-Saturated Lactoferrin Stimulates Cell Cycle Progression through PI3K/Akt Pathway

  • Lee, Shin-Hee;Pyo, Chul-Woong;Hahm, Dae Hyun;Kim, Jiyoung;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.37-42
    • /
    • 2009
  • Iron binding lactoferrin (Lf) is involved in the control of cell cycle progression. However, the molecular basis underlying the effects of Lf on cell cycle control, as well as its target genes, remains incompletely understood. In this study, we have demonstrated that a relatively low level of ironsaturated Lf, Lf($Fe^{3+}$), can stimulate S phase cell cycle entry, and requires Akt activation in MCF-7 cells. Lf($Fe^{3+}$) immediately induced Akt phosphorylation at Ser473, which subsequently induced the phosphorylation of two G1-checkpoint Cdk inhibitors, $p21^{Cip/WAF1}$ and $p27^{kip1}$. The Lf($Fe^{3+}$)-induced phosphorylation of Cdk inhibitors impaired their nuclear import behavior, thereby inducing cell cycle progression. However, the treatment of cells with a PI3K inhibitor, LY294002, almost completely blocked Lf($Fe^{3+}$)-stimulated cell cycle progression. LY294002 treatment abrogated Lf($Fe^{3+}$)-induced Akt activation, and prevented the cytoplasmic localization of $p27^{kip1}$. Higher levels of $p21^{Cip/WAF1}$ were also detected in the cytoplasmic sub-cellular compartment as a measure of cellular response to Lf($Fe^{3+}$). Consequently, the degree of phosphorylation of retinoblastoma protein was enhanced in response to Lf($Fe^{3+}$). Therefore, we conclude that Lf($Fe^{3+}$), as a potential antagonist of Cdk inhibitors, can facilitate the functions of E2F during progression to S phase via the Akt signaling pathway.

포황 메탄올 추출물에 의한 인체 대장암 세포주 HT29의 G2/M Arrest 및 Apoptosis 유발 (Induction of G2/M Arrest and Apoptosis by the Methanol Extract of Typha orientalis in Human Colon Adenocarcinoma HT29 Cells)

  • 진수정;윤승근;오유나;이지영;박현진;진경숙;권현주;김병우
    • 한국미생물·생명공학회지
    • /
    • 제41권4호
    • /
    • pp.425-432
    • /
    • 2013
  • 본 연구에서는 인체 대장암세포인 HT29를 사용하여 포황 메탄올 추출물(Methanol extract of Typha orientalis, METO)의 항암 활성 및 그 분자적 기전에 관하여 분석하였다. 먼저 METO가 다양한 암세포의 증식에 미치는 영향을 분석한 결과, 인체 대장암 세포, 폐암 세포, 간암 세포 등의 세포증식을 억제하였으며 그 중에서도 대장암 세포인 HT29에 대해 강한 세포 증식 억제 효과를 나타내었다. METO에 의한 세포 증식 억제 기전을 분석하기 위하여 Flow cytometry analysis를 수행한 결과, METO 농도의존적으로 HT29 세포의 G2/M기 세포분포가 증가하고 아울러 apoptosis 유발군인 SubG1기 세포분포가 증가하는 것을 확인할 수 있었다. METO에 의한 HT29 세포의 G2/M arrest는 Cdc2의 inactive form인 phospho-Cdc2의 증가에 의한 G2/M checkpoint 관련 단백질의 활성억제에 의한 것이라 사료된다. 이러한 phospho-Cdc2의 증가는 METO에 의해 발현이 증가된 Wee1 kinase와 발현이 감소된 Cdc25C phosphatase에 의해 야기된 것임을 확인하였다. 또한 METO에 의한 HT29의 apoptosis 유도에 관한 분자적 기전 분석을 위해 Western blot analysis를 수행한 결과, METO 농도가 증가할수록 종양 억제 유전자인 p53, death receptor인 FAS, Bcl-2 family 중 pro-apoptotic 단백질인 Bax 및 cytosolic cytochrome C의 발현이 증가되고, Caspase-3가 활성화되어 단편화된 Caspase-3의 증가가 관찰되었다. 또한 활성화된 Caspase-3의 기질 단백질인 PARP의 단편화가 일어나 apoptosis가 유도되는 것을 알 수 있었다. 이상의 결과들로부터 METO는 인체 대장암세포 HT29의 G2/M arrest 및 apoptosis 유도에 의한 항암활성을 보유함을 확인하였다.