• 제목/요약/키워드: G+C mol%

Search Result 704, Processing Time 0.032 seconds

Identification of a New Agar-hydrolyzing Bacterium Vibrio sp. S4 from the Seawater of Jeju Island and the Biochemical Characterization of Thermostable Agarose (제주도 연안 해양에서 분리한 한천분해 미생물 Vibrio sp. S4의 동정 및 내열성 agarase의 생화학적 특성)

  • Lee, Chang-Ro;Chi, Won-Jae;Bae, Chang-Hwan;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Agar-hydrolyzing bacteria were isolated from the coastal sea water of Jeju Island. One isolate, designated as S4, was selected for further study. The S4 cells were Gram-negative and rod-shaped with smooth beige surfaces and single polar flagellum. Cells were grown at $15-42^{\circ}C$, 0.5-5% (w/v) NaCl, between pH 6.0 and 9.0, and in media containing 0.5-5% (w/v) NaCl. The G+C content was 49.93 mol%. The major fatty acids (>15%) were $C_{18:1}{\omega}7c$, $C_{16:0}$ and Summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH). Based on 16S rRNA sequencing and biochemical and chemotaxonomic characteristics, the strain was designated as Vibrio sp. S4. In liquid culture supplemented with 0.1% agar the cell density and agarase activity reached a maximum level in 72 h, while agarase activity in the culture without agar was negligible, implying agarose expression is induced by agar. The optimum pH and temperature for the extracellular crude agarase of S4 were 7.0 and $45^{\circ}C$, respectively. However, it also exhibited 98.6% and 87.6% at $40^{\circ}C$ and $50^{\circ}C$, respectively, of the maximum activity seen at $45^{\circ}C$. The crude agarase hydrolyzed agarose into (neo)agarotetraose and (neo)agarohexaose.

Analysis of Thermal Degradation Process if Commercial Rubber for Environmentally Benign Process (범용고무의 환경친화적 처리를 위한 열분해 공정 해석)

  • 김형진;정수경
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.123-133
    • /
    • 2000
  • The kinetic analysis was carried out for commercial rubbers such as NR, IR, BR, SBR 1500, and SBR 1700. Kinetic analysis for the commercial rubbers was performed using the thermogravimetric method, with which the activation energies of NR obtained by Kissinger, Friedman, and Ozawa's method were 195.0, 198.3 and 186.3kJ/mol, whereas that of SBR 1500 were 246.4, 247.5 and 254.8kJ/mol, respectively. It was shown that the yield of pyrolytic oil was generally increased with final temperature increasing, yet slightly decreased or increased over $700^{\circ}C$. Considering the effect of heating rate, it was found that the yield of pyrolytic oil was not consistent for each sample. The number average molecular weight of SBR 1500 was in the range of 740~2486. The calorific value of SBR 1500 was 39~40kJ/g, which were made comparative study of the conventional fuel such as kerosene, diesel, light fuel, and heavy fuel. Therefore it was essential that the selection of the suitable kinetic model and the mathematical solution because of the difference in parameters obtained from each method. It was proposed that the range of $600~700^{\circ}C$ in final temperature and high heating rate due to short run time. It was suggested that the pyrolytic oil be available to use to the fuel.

  • PDF

Properties of a Thermolabile Alkaline Phosphatase from the Marine Bacterium Vibrio sp. M-96 (해수에서 분리한 Vibrio sp. M-96 균주의 열감수성 alkaline phosphatase 성질)

  • Park, Moon-Kyung;Jin, Deuk-Hee;Kim, Joong-Kyun;Kong, In-Soo;Kim, Kwang-Hyeon;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.198-203
    • /
    • 1996
  • A thermolabile alkaline phosphatase has been purified through steps of osmotic shock, ammonium sulfate salting-out, and DAEA-cellulose chromatography from the cultured broth of the marine Vibrio sp. M-96 strain. The optimal temperature for the enzyme activity was 35$\circ$C. The optimal pH was pH11.0, and the range of pHstability was pH10.4 to 12.0. Thermal inactivation occured within 6 mintes at 60$\circ$C. The enzyme was considerably inactivated by 0.1mM concentrations of Hg$^{2+}$, Ni$^{2+}$ and Zn$^{2+}$, whereas activated up to 234% by 1mM of Mn$^{2+}$. The activation energy and deactivation energy by the Arrhenius equation were 4.02 Kcal/mol and 9.098 Kcal/mol, respectively. The Km and Vmax values of the enzyme for p-introphenylphosphate were found to be 0.0465mM and 0.001334mM/min, respectively. Active form of the enzyme had a molecular weight of 57,000 dalton determined by the Sephadex G-200 gel filtration method.

  • PDF

Conformational Preference of Alanine Dipeptide in the Gas Phase and in Solutions

  • Kim, Daeyou;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.73-73
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of alanine (Ac-Ala-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level with the 6-3l+G(d) basis set to investigate the conformational preference of alanine depending on the backbone torsion angles $\square$ and$\square$ in the gas phase, chloroform, and water. There are seven local minima (LM) in the gas phase and two additional LM are found in chloroform and water. These two additional LM A (an $\square$-helical structure) and F (a polyproline structure) are stabilized only in solutions. In the gas phase, the lowest LM is the conformation C with a C$\sub$7/ intramolecular hydrogen bond and the relative conformational energies range from 0.3 to 6.0 ㎉/mol. In chloroform, the lowest LM is the conformation E (an extended structure) and the relative conformational energies range from 0.7 to 4.9 ㎉/mol. In particular, we identified 14 possible transition states connecting between seven LM in the gas phase. The search for transition states probable in chloroform and water is now in progress.

  • PDF

Protonation and Energetical Investigations of Calix[4]-cyclen-benzo-crown-6 and Its Complexes with Zinc and Copper

  • Boonchoo, Thanaporn;Pulpoka, Buncha;Ruangpprnvisuti, Vithaya
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.819-822
    • /
    • 2004
  • Protonation constants of calix[4]-cyclen-benzo-crown-6, L in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ determined by potentiometric titration are log $K_1$ = 10.91, log $K_2$ = 10.30, log $K_3$ = 6.24 and log $K_4$ = 2.55. Stability constants for the receptor L complexes with Cu(II) and Zn(II) in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ were determined by UV-VIS spectrometric titration. Stability constants of the CuL and ZnL complexes as log $\beta$ are 4.37 and 3.45, respectively. Stabilization energies for protonations of receptor L, derived from ab initio Hartree-Fock method with 6-31G basis set, are ${\Delta}E_1$ = -290.1, ${\Delta}E_2$ = -205.0, ${\Delta}E_3$ = -124.9 and ${\Delta}E_4$ = -26.9 kcal/mol and complexation energy of ZnL complex is -370.3 kcal/mol.

Complete Genome Sequence of Priestia flexa DMP08 Isolated from Kimchi, Traditional Korean Fermented Vegetables

  • Junghyun Park;Jong Hun Kim;Do-Won Jeong
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.208-211
    • /
    • 2023
  • Strain Priestia flexa DMP08, isolated from traditional Korean fermented vegetables kimchi, exhibits protease activity and lipase activity. The complete genome of strain DMP08 includes a single circular 3,999,911-bp chromosome without plasmids. The G+C content of the genome is 38.1 mol%. The genome includes 38 protease-and 3 lipase-encoding genes.

Complete Genome Sequence of Weissella koreensis DMW12 Isolated from Kimchi, Traditional Korean Fermented Vegetables

  • Do-Won Jeong
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.91-93
    • /
    • 2024
  • Weissella koreensis DMW12 was isolated from kimchi added Myeongtae (Theragra chalcogramma), and its complete genome sequence was determined. The complete genome of strain DMW12 includes a single circular 1,518,288-bp chromosome without plasmids. The G+C content of the genome is 35.6 mol%. Although strain DMW12 did not showed protease and lipase activities, the genome includes 33 protease- and 3 lipase-encoding genes. The genome of strain DMW12 does not include acquired antibiotic resistance genes against ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, tetracycline, and streptomycin.

Physicochemical Characteristics of Black Garlic (Allium sativum L.) (흑마늘의 이화학적 특성)

  • Choi, Duk-Ju;Lee, Soo-Jung;Kang, Min-Jung;Cho, Hee-Sook;Sung, Nak-Ju;Shin, Jung-Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.465-471
    • /
    • 2008
  • Physicochemical characteristics of black garlic were analyzed. Colorimetry measurement showed that the black garlic, compared with fresh and steamed garlics, was the highest in a value and the lowest in L and b values. Crude lipid, crude protein, and total sugars were the highest in black garlic, which was followed by steamed and fresh garlic. On the other hand, moisture content was the lowest in the black garlic and the highest in the fresh garlic. The pH of garlics was ca. 6.8, 6.5, and 4.4 in fresh, steamed, and black garlic, respectively, which indicated that garlics tended to be acidified with the thermal processing. Total pyruvate and total thiosulfinates were the lowest in steamed garlic ($77{\mu}mol$/g and 0.07 OD/g for each) and the highest in black garlic ($278{\mu}mol$/g and 0.77 OD/g). Arabinose and galactose were detected only in black garlic and their contents were 1.6 and 13 mg/100 g, respectively. Free sugars such as glucose, sucrose and fructose were the highest in the order of fresh, steamed, and black garlic. Potassium was a predominant mineral in all garlics, constituting 76% of total minerals. Glutamic acid, arginine, and aspartic acid were the major composition amino acids in all garlics, regardless of processing conditions. 15 kinds of free amino acids were detected in fresh and steamed garlic, while five more free amino acids, O-phosphoethanolamine, and urea were additionally detected in black garlic.

Environmental and Biological Effects at Narodo, in the Southern Water of Korea, on Bloom of Ichthyotoxic Dinoflagellates Cochlodinium polykrikoides (유해성 Cochlodinium polykrikoides 최초 발생에 관한 나로도 해역의 환경학적 특성 및 식물플랑크톤 군집 구조)

  • Cho Eun Seob
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.225-230
    • /
    • 2005
  • The aim of this study was to examine the fluctuation in phytoplankton assemblages with regarding to environmental conditions and nutrients, which were surveyed quarterly over the fours seasons (February, May, July, and October). In turn, an understanding of biological effects should provide insights into a wide range of initiated Cochlodinium blooms in Narodo. Sampling was carried out throughout 2001 on the coasts of Busan (St. 1), Yeosu (St. 2), Narodo (St. 3), Kohung (St. 4), and Kwangdo (St. 5). The maximum surface water temperature was recorded in July, and it ranged from 20 to $22^{\circ}C$. Salinity showed no great variation, which maintained itself in the range of 29-34 psu. The maximum surface salinity was recorded in February, which was about 34 psu. The chlorophyll $\alpha$ concentration of the surface water ranged from 0.01 to $1.3\;{\mu}g\;1^{-1}$. The concentrations of $NH_{4}-N $ were persistently high from February to October; in particular, the peak was observed at St. 1 in February and May (0.15 and $0.19\;{\mu}mol\;1^{-1}$, respectively), while it was detected at St. 2 in July and October (0.22 and $2.2\;{\mu}mol\;1^{-1}$ respectively). Similar trends to those for $NH_4-N $ were observed in the concentrations of $NO_{2}-N$ and $NO_{3}-N$. In contrast to nitrogen, a distinct peak of $NO_{4}-P$ at St. 3, 4, and 5 was observed throughout year $(0.01-0.1\;{\mu}mol\;1^{-1}$ except for October. At St. 1 encounter a peak of cell number of 30,000 and $13{\times}10^3$ cells $1^{-1}$, respectively, in July and October. During the period of this study, the majority of the taxa were diatoms. The dinoflagellates were rather abundant after February, in particular at St. 3, 4, and 5 which attained an abundance of $10\~20\%$without marked fluctuation during the period of this study. At St. 3, the highest average cell width, $178.11\;{\mu}m$, was recorded: the highest cell length, $337.72\;{\mu}m$, was measured in July. Consequently, dinoflagellates bloom in July at Narodo influenced by warm water current are not only associated with a desirable development of cell morphometric characteristics, but also with the health growth of C. polykrikoides. During the period of this study, warm water currents caused an increased water temperature in Narodo, but did not change the amount of nutrients.

Stability of Tris(2-cyclohexylaminoethyl)amine-Zn(II) Complex (Tris(2-cyclohexylaminoethyl)amine-Zn(II) 착물의 안정성)

  • Yong Woon Shin;Hyun Sook Baek;Jae-Kyung Yang;Jineun Kim;Moo Lyong Seo
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Tris(2-cyclohexylaminoethyl)amine (L) was synthesized by the Schiff base condensation reaction of tris(2-aminoethyl)amine with cyclohexanone, followed by reduction. The thermodynamic characteristics, mole ratio and formation constant of [Zn(II)-L] complex were measured by the cyclic voltammetry and isothermal titration. In the case of Zn(II), well-defined cathodic and anodic peak were obtained at -1.02V and -0.48V vs Ag/AgCl , respectively. For the [Zn(II)-L] complex, both peaks were obtained at -1.19V and -0.45V vs Ag/AgCl, respectively. In addition, the peak height gradually increases as the scan rate increases, suggesting that the currents obtained were diffusion - controlled. The mole ratio and stability constant of the complex measured cyclic voltammerty were 1:1 and logK$_f$= 5.8, respectively. And the mole ratio and stability constant of the complexe calculated by isothermal titration method was 1:1 and logK =5.4, respectively. ${\Delta}$H, ${\Delta}$G and T${\Delta}$S for the complex formation were -53.0 kJ/mol, -31.1 kJ/mol, and -21.9 J/K at 25 ${\circ}$C, respectively.