• Title/Summary/Keyword: Fuzzy-Neural network

Search Result 1,208, Processing Time 0.028 seconds

An Analysis of Mixed Pixel in the Remote Sensing Image Data (위성탐사 이미지에서 혼합화소의 해석에 관한 연구)

  • Kim, Jin-Il;Park, Min-Ho;Kim, Sung-Chun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.91-100
    • /
    • 1995
  • The aim of this study is to classify mixed information in a pixel of a remote sensing image data (in the case of SPOT HRV's band $1{\sim}3,\;20m{\times}20m$). First, the loss of information and the uncertainty of mixed pixel are examined. To solve the problems, methods by fuzzy sigmoid function and back-propagation neural network are suggested. Then. the study simulates and comparatively analyzes the two methods.

  • PDF

Model Following Adaptive Controller with Rotor Resistance Estimator for Induction Motor Servo Drives (회전자 저항 추정기를 가지는 유동전동기 구동용 모델추종 적응제어기 설계)

  • Kim, Snag-Min;Han, Woo-Yong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2001
  • This paper presents an indirect field-oriented (IFO) induction motor position servo drives which uses the model following adaptive controller with the artificial neural network(ANN)-based rotor resistance estimator. The model reference adaptive system(MRAS)-based 2-layer ANN estimates the rotor resistance on-line and a linear model-following position controller is designed by using the estimated the rotor resistance value. At the end, a fuzzy logic system(FLS) is added to make the position controller robust to the external disturbances and the parameter variations. The simulation results show the effectiveness of the proposed method.

  • PDF

A Study on the Robust AC Drive Systems using Fuzzy-Neural Network (퍼지-신경회로망을 적용한 강인한 AC드라이브 시스템에 관한 연구)

  • Jeon, Hee-Jong;Kim, Jae-Chul;Kim, Beung-Jin;Mun, Hark-Yong;Son, Jin-Geun;No, Nam-Young
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 1997
  • 본 논문에서는 퍼지제어기와 신경회로망 적응 관측기를 적용하여 강인성을 AC드라이브 시스템을 제안하였다. 퍼지제어기는 유도전동기의 속도 제어시 빠른 속도 응답 특성을 얻기 위하여 사용하였다. 신경회로망 적응관측기는 전동기 파라메터 변화에 대하여 강인한 제어 시스템이 되도옥 자속 관측기오 토오크 적응관측기로 구성하였다. 사용된 신경회로망은 자속과 토오크의 동특성을 학습시키기 위하여 역전파 알고리즘을 사용하였따. 컴퓨터 시뮬레이션의 결과를 통해 제안된 시스템이 전동기 파라메터 변동과 부화이론에 강인하고 속도응답 특성이 우수함을 입증하였다.

  • PDF

Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller (다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Vision Based Walking Assitant System for Biped Wlaking Robot (이족로봇을 위한 비전기반 보행 제어 시스템)

  • Kang, Tae-Koo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.329-330
    • /
    • 2007
  • 지능형 로봇에서 환경인식과 이러한 환경에 따른 행동 결정능력은 로봇이 필수적으로 갖추어야 할 기능이다. 본 논문은 이족로봇 플랫폼에서 비전기반 환경인식과 이를 통한 안정적인 보행 제어시스템을 제안한다. 비전기반 환경인식 시스템은 움직임 모델을 이용한 로봇 자체 움직임 보정 모듈, Adaboost를 이용한 장애물 영역 추출, PCA를 이용한 장애물 특징 추출, Hierarchical SVM을 이용한 장애물 인식 모듈로 구성되어 있으며, 이러한 환경 인식 시스템으로부터 보행 제어 시스템은 상황에 맞는 안정적이 보행 궤적을 생성한다. 보행 제어 시스템은 neural network을 이용하여 보행 궤적 생성 모듈과 보행 오차를 보정하기 위한 fuzzy 제어기 모듈로 구성되어 있다. 본 시스템을 제작한 로봇에 적용한 결과 보다 안정적인 보행을 할 수 있었다.

  • PDF

A Feature Analysis of the Power Quality Problem by PCA (PCA를 이용한 전력품질 특징분석)

  • Lee, Jin-Mok;Hong, Duc-Pyo;Kim, Soo-Cheol;Choi, Jae-Ho;Hong, Hyun-Mun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.192-194
    • /
    • 2005
  • Development of nonlinear loads and compensation instruments make PQ(Power Quality) problem into important issue. Few studies by signal processing and pattern classification as NN(Neural Network), Wavelet Transform, and Fuzzy present feature extraction. A lot of Input features make not always good result and they are difficult to make realtime system. Thus, The dimentionality reduction is indispensable process. PCA(Principal Component Analysis) reduces high-dimensional input features onto a lower-dimensional subspace effectively. It will be useful to apply to realtime system and NN.

  • PDF

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Electric Energy Forecasting and Development of Load Curve Based on the Load Pattern (전력량 예측 및 부하 패턴을 근거로 한 부하 곡선 예측)

  • Ji, P.S.;Cho, S.H.;Lee, J.P.;Nam, S.C.;Lim, J.Y.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.163-165
    • /
    • 1996
  • In this paper, we are proposed development of electric energy method and load curve. A daily electric energy is forecasted using artificial neural network. The load curve is obtained by combining forecasted electric energy and typical daily load patterns which are classified using KSOM and Fuzzy system. As a result, we know that we could get more accurate results and easier application than the results from based on the hourly historical data.

  • PDF