• Title/Summary/Keyword: Fuzzy weight

Search Result 322, Processing Time 0.041 seconds

Design of a Fuzzy Re-adhesion Controller for Wheeled Robot (이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon Sun-Ku;Huh Uk-Youl;Kim Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm adjusts the driving torque for restraining re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy, These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

Shortest Path Problem in a Type-2 Fuzzy Weighted Graph (타입-2 퍼지 가중치 그래프에서의 최단경로문제)

  • Lee, Seungsoo;Lee, Kwang H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.314-318
    • /
    • 2001
  • Constructing a shortest path on a graph is a fundamental problem in the area of graph theory. In an application where we cannot exactly determine the weights of edges, fuzzy weights can be used instead of crisp weights, and Type-2 fuzzy weights will be more suitable if this uncertainty varies under some conditions. In this paper, shortest path problem in type-1 fuzzy weighted graphs is extended for type-2 fuzzy weighted graphes. A solution is also given based on possibility theory and extension principle.

  • PDF

Fuzzy Re-adhesion Control for Wheeled Robot (이동 로봇의 퍼지 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.30-32
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy.

  • PDF

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

A STUDY ON RISK WEIGHT USING FUZZY IN REAL ESTATE DEVELOPMENT PROJECTS

  • Sung Cho;Kyung-ha Lee ;Yong Cho ;Joon-Hong Paek
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1176-1182
    • /
    • 2009
  • Due to recession in real estate market, interest of risk analysis is increasing. Feasibility study in the first stage takes a great role in a project. There are not objectified tools which are able to cope with uncertainty of project, and feasibility study based on selected method of determinism does not include liquidity of weight risk. Also, shortage of consideration for subjective and atypical external factors causes inappropriate results. Therefore, this study proposes feasibility study model focused on risk factor influences in construction cost and sales cost. Considering effective level of cost based on objective risk factors and probable weight of risk by this model, real workers are able to bring correct and scientific decisions better than former method based on selective analysis of real estate development.

  • PDF

A Fuzzy Evaluation Method of Traveler's Path Choice in Transportation Network (퍼지평가방법을 이용한 교통노선 결정)

  • 이상훈;김덕영;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2002
  • This study is realized using fuzzy evaluation and AHP(the analytic hierarchy process) for the optimum search of traffic route and estimated by the quantitative analysis in the vague subjective judgement. It is different from classical route search and noticed thinking method of human. Appraisal element, weight, appraisal value of route is extracted from basic of the opinion gathering fur the driving expert and example of route model was used for the finding of practice utility. Model assessment was performed attribute membership function making of estimate element, estimate value setting, weight define by the AHP, non additive presentation of weight according to $\lambda$-fuzzy measure, Choquet fuzzy integral.

Weight Evaluation of Risk Factors for Early Construction Stage (초기 건설공사 리스크인자의 중요도 산정)

  • Hwang Ji-Sun;Lee Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.115-122
    • /
    • 2004
  • This study identifies various risk factors associated with activities of early construction stage, then establishes the Risk Breakdown Structure(RBS) by classifying the risks into the three groups; Common risks, risks for Earth works, and risks for Foundation works. The Common risks are identified and classified by considering various aspects of the early construction stage such as financial, political, constructional aspects, etc. The risks for Earth works and Foundation works are identified in detail by surveying technical specifications, relevant claim cases and interviewing with experts. These risks are classified based on the Wok Breakdown Structure(WBS) of the early construction stage. The WBS presented in this study classifies the works of early construction stage into four categories; excavation, sheeting works, foundation works, footing works. This study suggests a risk analysis method using fuzzy theory for construction projects. Construction risks are generally evaluated as vague linguistic value by subjective decision making. Fuzzy theory is a proper method to quantify vague conditions of construction activities. Therefore, this study utilizes fuzzy theory to analyse construction risks. The weight of risks is estimated by reflecting the interrelationship among risk factors from absolute weights obtained by fuzzy measure into the relative weights by Analytical Hierarchy Process(AHP). The interrelationship is estimated by Sugeno-fuzzy measure.

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

On design of neural controller with the fuzzy weight for an underwater vehicle (수중운동체를 위한 퍼지 가중치를 갖는 뉴럴 제어기 설계)

  • 김성현;최중락;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.151-158
    • /
    • 1996
  • As an approach to design the intelligent controller for an underwater vehicle, this paper will propose a neural controller with the fuzzy weight which can tune the ocntorl rule effectively. The initial weights of th efuzzy-neural controller are constructdd by priori-information based on fuzzy control theory and tuned automatically by learning. The proposed control scheme has two improtnat characteristics of adaptation and learning under the control environment. Also it has the advantage that the precise dynamic characteristics of an underwater vehicle may not be required. The effectiveness of the proposed scheme will be demonstrated by computer simulations of an underwater vehicle.

  • PDF

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF