• 제목/요약/키워드: Fuzzy systems modeling

검색결과 426건 처리시간 0.027초

입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application by Input Space Partition Methods)

  • 곽근창;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

State Recognition and Prediction of a Batch Culture Using Fuzzy Rules

  • Fukuda, Tsunenobu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1098-1101
    • /
    • 1993
  • The purpose of this work is to build a fuzzy model of a batch culture for a process control. The process is highly nonlinear system with large delay. This paper presents two methods of modeling the process behavior. One is a method of recognizing them by fuzzy rules that are contracted by the pattern analysis in consideration of skilled operators' way. The other is a method of predicting them by approximate linear models and fuzzy rules by statistic analysis.

  • PDF

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

퍼지 클러스터링을 이용한 고농도오존예측 (Forecasting High-Level Ozone Concentration with Fuzzy Clustering)

  • 김재용;김성신;왕보현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

연속식 공중합 반응기의 모델링 및 제어기 설계 (Modeling and controller design for a continuous copolymerization reactor)

  • 황우현;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.788-791
    • /
    • 1996
  • A mathematical model is developed for thermal solution copolymerization of styrene and acrylonitrile in a continuous stirred tank reactor(CSTR). Computational studies are carried out with the continuous copolymerization system model developed in this work to give the monomer conversion, copolymer composition and the average molecular weights of the copolymer. By performing the dynamic analysis of the reaction system, the polymer properties against the changes in the operating conditions are determined quantitatively. The cascade PID and fuzzy controller show satisfactory performances for both set point tracking and disturbance rejection. Especially, the fuzzy controller is superior to the PID controller.

  • PDF

비선형(非線型) 시스템의 퍼지 모델링 기법과 안정도(安定度) 해석(解析)에 관한 연구 (Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis)

  • 이준탁;소명옥;이상석;지석준;김태우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.801-803
    • /
    • 1995
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptation controllers which guarrantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

On Generating Fuzzy Systems based on Pareto Multi-objective Cooperative Coevolutionary Algorithm

  • Xing, Zong-Yi;Zhang, Yong;Hou, Yuan-Long;Jia, Li-Min
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.444-455
    • /
    • 2007
  • An approach to construct multiple interpretable and precise fuzzy systems based on the Pareto Multi-objective Cooperative Coevolutionary Algorithm (PMOCCA) is proposed in this paper. First, a modified fuzzy clustering algorithm is used to construct antecedents of fuzzy system, and consequents are identified separately to reduce computational burden. Then, the PMOCCA and the interpretability-driven simplification techniques are executed to optimize the initial fuzzy system with three objectives: the precision performance, the number of fuzzy rules and the number of fuzzy sets; thus both the precision and the interpretability of the fuzzy systems are improved. In order to select the best individuals from each species, we generalize the NSGA-II algorithm from one species to multi-species, and propose a new non-dominated sorting technique and collaboration mechanism for cooperative coevolutionary algorithm. Finally, the proposed approach is applied to two benchmark problems, and the results show its validity.

불안정한 다변수 시스템에 대한 퍼지 학습제어 (Fuzzy Learning Control for Multivariable Unstable System)

  • 임윤규;정병묵;소범식
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.808-813
    • /
    • 1999
  • A fuzzy learning method to control an unstable and multivariable system is presented in this paper, Because the multivariable system has generally a coupling effect between the inputs and outputs, it is difficult to find its modeling equation or parameters. If the system is unstable, initial condition rules are needed to make it stable because learning is nearly impossible. Therefore, this learning method uses the initial rules and introduces a cost function composed of the actual error and error-rate of each output without the modeling equation. To minimize the cost function, we experimentally got the Jacobian matrix in the operating point of the system. From the Jacobian matrix, we can find the direction of the convergence in the learning, and the optimal control rules are finally acquired when the fuzzy rules are updated by changing the portion of the errors and error rates.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.