• Title/Summary/Keyword: Fuzzy risk analysis

Search Result 112, Processing Time 0.022 seconds

Evaluating comparisons of geological hazards in landslides using fuzzy logic methods and hierarchical analysis

  • Shasha Yang;Maryam Shokravi;H. Tabatabay
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.499-505
    • /
    • 2023
  • Geological hazards in landslide is one of the most extensive and destructive phenomena are among natural disasters. According to the topography high mountains, tectonic activity, high seismicity, diverse conditions Geology and climate, basically China to create a wide spectrum of landslides have natural conditions and these landslides are annual. They cause a lot of financial losses to the country. It is very difficult to predict the time of the landslide, hence the identification landslide sensitive areas and zoning of these areas based on the potential risk is very important. Therefore, it should be susceptible areas landslides should be identified in order to reduce damages caused by landslides find. the main purpose of landslide sensitivity analysis is identification high-risk areas and as a result, reducing damages caused by landslides It is the way of appropriate actions.

Identification and risk management related to construction projects

  • Boughaba, Amina;Bouabaz, Mohamed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.445-465
    • /
    • 2020
  • This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.

Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Fuzzy Algorithm and Environmental Stress Model (시뮬레이터 기반 퍼지알고리즘과 환경스트레스모델을 이용한 선박 충돌위험도 추정에 관한 연구)

  • Son, Nom-Sun;Kim, Sun-Young;Gong, In-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Recently, many maritime accidents have been increased and the collisions due to human error are given a great deal of proportions out of them We develop the Real-time Collision Risk Monitoring System (CRMS) for the navigational officers to cope with the emergency situation promptly and thus to reduce the probability of casualty. In this study, the risk of collision and grounding is evaluated by two kinds of method. The first method is based on Fuzzy algorithm, which evaluates the risk of collision between traffic ships. The second method is based on Environmental Stress (ES) Model, where the total risk of collision and grounding is evaluated by the environmental stress felt by human. The developed real-time CRMS has been installed to the ship handling simulator system and its capabilities have been tested through simulator experiments.

Dynamic Path Planning for Mobile Robots Using Fuzzy Potential Field Method (퍼지 포텐셜 필드를 이용한 이동로봇의 동적 경로 계획)

  • Woo, Kyoung-Sik;Park, Jong-Hun;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, potential field algorithm was used for path planning in dynamic environment. This algorithm is used to plan a robot path because of its elegant mathematical analysis and simplicity. However, there are some problems. The problems are problem of collision risk, problem of avoidance path, problem of time consumption. In order to solve these problems, we fused potential field with fuzzy system. The input of the fuzzy system is set using relative velocity and location of robot and obstacle. The output of the fuzzy system is set using the weighting factor of repulsive potential function. The potential field algorithm is improved by using fuzzy potential field algorithm and, path planning in various environment has been done.

Expert System for FMECA Using Minimal Cut Set and Fuzzy Theory (최소절단집합과 퍼지이론을 이용한 FMECA 전문가 시스템)

  • Kim, Dong-Jin;Kim, Jin-O;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.342-347
    • /
    • 2009
  • Failure Mode Effects and Criticality Analysis (FMECA) is one of most widely used methods in modern engineering system to investigate potential failure modes and its severity upon the system. While performing FMECA, the experts evaluates criticality and severity of each failure mode and visualize the risk level matrix putting those indices to column and row variable respectably. Which results uncertainty in the result. In order to handle the uncertainty and conclude risk level matrix, this paper proposes a new FMECA procedure using minimal cut set (MCS) and fuzzy theory. Severity is calculated by proposed structural importance while criticality is determined by typical equipment failure rate data from IEEE Std 493. Finally, the risk level is compounded of these indices.

Risk Assessment of Submerged Floating Tunnels based on Fuzzy AHP (퍼지 AHP를 이용한 수중터널의 재해위험도 분석)

  • Han, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3244-3251
    • /
    • 2012
  • In the construction and operation of large marine structure, hazard risk analysis is one of important factors. Therefore, this paper investigates the hazard risk indexes and evaluates the risk level in the construction and operation of SFT on the basis of expert survey and Fuzzy analytic hierarchy process. Hazard risk is divided into natural hazard risk (earthquake, typhoon, tsunami, and ice collision) and human factor hazard risk (fire, explosion, traffic accident, ship or submarine collision). Also, the influence of hazard risk indexes on SFT was evaluated in tunnel tube, supporting system, ventilation tower, foundation, and connection part. As the hazard risk level of SFT is compared with those of bridge, underwater tunnel, and immersed tunnel, the intrinsic risk level of SFT was evaluated. Tsunami and earthquake had higher risk level in natural hazard risk, and the risk levels of fire and explosion were higher in human factor hazard risk. Hazard risk level of SFT was 1.4 times higher than immersed tunnel, and 3.2 times higher than bridge.

An Approach to Combining Classifier with MIMO Fuzzy Model

  • Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.182-185
    • /
    • 2003
  • This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.

  • PDF

Evaluating and Suggesting Key Risk Factors according to Risk Hierarchy of Occurrence Field in the Overseas Development Projects (발생영역별 리스크 위계에 따른 투자개발형 해외건설사업의 핵심 리스크 인자 도출 및 평가)

  • Lee, Jeong-Seok;Ahn, Byung-Ju;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.2
    • /
    • pp.70-79
    • /
    • 2012
  • The Korean Government recently has been focused on strengthening competitiveness of order and stimulating construction market in the international construction industry. It has planned to extend the ODPs (overseas development projects) in order to diversifying the international construction market of which is domestic construction companies, placing too much emphasis on plant projects of the Middle East. However, literature review of risk analysis in the ODPs shows that the number of case study is several. Therefore, Authors asserted the necessity of risk analysis in the ODPs. The purpose of this study is to suggest a methodology that find KRFs (key risk factors) in the ODPs and analyze them, using AHP and Fuzzy theory. As a result, the 37 KRFs are selected and explained characteristics of them. A future direction of this study is to suggest a risk management model in the ODPs and prove feasibility of it.

Determination of Critical Hazard Factors in Vehicle-Mounted MEWP using Fuzzy-FMEA (퍼지-FMEA기법을 이용한 차량탑재형 고소작업대 사고의 주요 유해위험요소 위험우선순위 결정)

  • Seyoon Oh;Kangdon Lee;Jaeho ,Shin;Jae-Yong Lim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • In this study, we aimed to identify the important hazard factors and determine their criticality in causing serious accidents in vehicle-mounted mobile elevated work platforms (MEWPs). Fuzzy failure modes and effects analysis (FMEA)was performed using accident data and a survey of experts. To determine the hazard factors, the accident data for the last 10 years were used and a questionnaire survey was designed. The questionnaire survey was sent to four experts in the field of occupational safety to determine the severity, occurrence, and detectability of serious accidents in MEWPs. Furthermore, objective RPN scores and risk priority were obtained using fuzzy FMEA. Finally, the criticality of hazard factors in descending order was found to be overloading, non-installation or defective installation of outriggers, breakage due to wire rope aging, and illegal remodeling of vehicle structures. The results were verified by comparing the occurrence data of serious disasters.

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF