• Title/Summary/Keyword: Fuzzy regression model

Search Result 154, Processing Time 0.023 seconds

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Household Types and Changes of Work-Family Time Allocation - Adapting Fuzzy-set Ideal Type Analysis - (일-가족 시간배분에 따른 가구유형과 변화 - 퍼지셋 이상형 분석의 적용 -)

  • Kim, Jin-Wook;Choi, Young-Jun
    • Korean Journal of Social Welfare
    • /
    • v.64 no.2
    • /
    • pp.31-54
    • /
    • 2012
  • Along with increasing mothers' employment, work-family reconciliation has been recognised as a key policy agenda in contemporary welfare states. Although various policy instruments have been introduced and expanded in recent years, the problem of time allocation within couples still remains as a fundamental issue, which has been largely underresearched at a micro perspective. In this context, this study aims to identify dominant types of work-family time allocation within married couple, and to apply these types to the Korean case using the fuzzy-set ideal type analysis. Further, a series of multiple regression analyses will be implemented to find factors affecting each ideal type of work-family time allocation. The 1999 and 2009 Korea Time Use Survey datasets will be adopted for the analyses. Married couples are selected as samples only when men work 40 hours or more per week and they have at least one pre-school child. Empirical analyses cover three parts. First of all, four ideal types on work-family time allocation are classified by intersecting two core variables - the ratio of men's (paid) working and family (caring time plus domestic work) time to total working and family time. In this research, the four types will be labelled the traditional male breadwinner model (TM, high working and low family time), the dual burden model (DB, shared working but low family time), the family-friendly male breadwinner model (FM, high working but shared family time), and the adaptive partnership model (AP, shared working and shared family time). By comparing the composition of the four ideal types in 1999 and 2009, it will examine the trend of work-family time allocation in Korea. In addition, multiple regressions will be useful for investigating which characteristics contribute to the different degree of each fuzzy ideal score in the four models. Finally, policy implications and further research agenda will be discussed.

  • PDF

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

A study on intelligent fish-drying process control system

  • Nakamura, Makoto;Shiragami, Teizoh;Sakai, Yoshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.132-137
    • /
    • 1993
  • In this paper, a fish drying process control system is proposed, which predicts the proper change with time in weight of the material fish and the drying conditions in advance, based on the performance of skilled worker. In order to implement a human expertise into an automated fish drying process control system, an experimental analysis is made and a model for the process is built. The proposed system divided into two procedures: The procedure before drying and the one during drying. The procedure before drying is for the prediction of necessary drying time. To estimate the necessary drying time, first, the proper change in weight for the product is obtained by using fuzzy reasoning. The condition part of the production rule consists of the factors of fish body and the expected degree of dryness. Kext, the necessary drying time is obtained by regression models. The variables employed in the models are the factors, inferred change in weight and drying conditions. The model for the procedure during drying is also proposed for more accurate estimation, which is described by a system of linear-differential equations.

  • PDF

Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture (자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계)

  • Park, Ho-Sung;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Monitoring The Children's Health Status and Forecasting Height with Nutritional Advice

  • Nguyen, Kim Ngan;Ton, Nu Hoang Vi;Vu, Tran Minh Khuong;Bao, Pham The
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.680-692
    • /
    • 2018
  • Children's health is interesting to parents and society. A system that assists to monitor the development of their children and gives nutritional advices is an interesting of parents. In this study, we present a system that allows to track the heights and weights of a child since he/she was born up to adulthood, to predict his age of puberty, and to provide nutritional advice. Particularly, it predicts the height in near future and the adult stature for detecting the child with abnormal development. We applied Sager's model for predicting the height in near future by using interpolation and regression techniques before puberty. After determining the puberty time, we proposed a model for predicting the height. Then we applied fuzzy logic for evaluating the health status and providing nutritional advice. Our system predicted stature in near future with error bound of $1.7361{\pm}0.0397cm$ in girls and $2.4020{\pm}0.0799cm$ in boys. Our model also gave a reliable adult stature prediction with error bound of $0.3507{\pm}0.2808cm$ in girls and $1.3414{\pm}0.7024cm$ in boys. At the same time, the nutrition was provided appropriately in terms of protein, lipid, glucid. We implemented a program based on this research. Our system promises to improve the health of every child.

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.