• Title/Summary/Keyword: Fuzzy optimization

Search Result 644, Processing Time 0.026 seconds

Multi-Objective Fuzzy Optimization of Structures (구조물에 대한 다목적퍼지최적화)

  • Park, Choon-Wook;Pyeon, Hae-Wan;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.503-513
    • /
    • 2000
  • This study treats the criteria, considering the fuzziness occurred by optimization design. And we applied two weighting methods to show the relative importance of criteria. This study develops multi-objective optimization programs implementing plain stress analysis by FEM and discrete optimization design uniformaly. The developed program performs a sample design of 10-member steel truss. This study can carry over the multi-objective optimization based on total system fuzzy-genetic algorithms while performing the stress analysis and optimization design. Especially, when general optimization with unreliable constraints is cannot be solve this study can make optimization design closed to realistic with fuzzy theory.

  • PDF

Identification Methodology of FCM-based Fuzzy Model Using Particle Swarm Optimization (입자 군집 최적화를 이용한 FCM 기반 퍼지 모델의 동정 방법론)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Son, Myung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.184-192
    • /
    • 2011
  • In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Hybrid Multi-layer Perceptron with Fuzzy Set-based PNs with the Aid of Symbolic Coding Genetic Algorithms

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.155-157
    • /
    • 2005
  • We propose a new category of hybrid multi-layer neural networks with hetero nodes such as Fuzzy Set based Polynomial Neurons (FSPNs) and Polynomial Neurons (PNs). These networks are based on a genetically optimized multi-layer perceptron. We develop a comprehensive design methodology involving mechanisms of genetic optimization and genetic algorithms, in particular. The augmented genetically optimized HFPNN (namely gHFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of HFPNN leads to the selection of preferred nodes (FPNs or PNs) available within the HFPNN. In the sequel, two general optimization mechanisms are explored. First, the structural optimization is realized via GAs whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFPNNs quantified through experimentation where we use a number of modeling benchmarks-synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

  • PDF

Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System (자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

Numerical Solutio of Inverse Problem of Fuzzy Modeling with Pseudo First Order Approzimation

  • Ikoma, Norikazu;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1230-1233
    • /
    • 1993
  • Numerical solution of inverse problem of Takagi-Sugeno fuzzy model is proposed. The method is located on the application of numerical optimization to the fuzzy model. Steepest descent method is used for the numerical optimization. We use the linear approximation of fuzzy model, called pseudo first order approximation, by fixing the membership value on the neighborhood of the corresponding input. It is introduced in order to reduce the difficulty of optimization process. The efficiency of this method is shown by a numerical experiment.

  • PDF

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms (진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tea-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

The Design of Fuzzy Controller Based on Genetic Optimization and Neurofuzzy Networks

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.653-665
    • /
    • 2010
  • In this study, we introduce a neurofuzzy approach to the design of fuzzy controllers. The development process exploits key technologies of Computational Intelligence (CI), namely, genetic algorithms (GA) and neurofuzzy networks. The crux of the design methodology deals with the selection and determination of optimal values of the scaling factors of fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out. Next, we form a nonlinear mapping for the scaling factors, which are realized by GA-based neurofuzzy networks by using a fuzzy set or fuzzy relation. The proposed approach is applied to control nonlinear systems like the inverted pendulum. Results of comprehensive numerical studies are presented through a detailed comparative analysis.

The Structure and Parameter Optimization of the Fuzzy-Neuro Controller (퍼지 신경망 제어기의 구조 및 매개 변수 최적화)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.